675 research outputs found

    Ультрафлокуляция – как метод повышения эффективности процесса извлечения тонкодисперсного угля из хвостов обогащения

    Get PDF
    На прикладі хвостів вуглезбагачення ОФ "Распадська" (р. Междуріченськ Кемеровської області, РФ) встановлено, що використання ультрафлокулярної обробки дає нижче-наступні переваги при витяганні тонкодисперсного вугілля методом седиментації в радіальному згущувачі: • зниження витрати флокулянтів – в 2,5-3,5 разу. • збільшення витягання вугільного концентрату з хвостів на 23…26%. • зменшення зольності концентрату, вилученого з хвостів з 18 до 12%. • зменшення вологості прес-фільтраційного кека концентрату, вилученого з хвостів з 40 до 35%.На примере хвостов углеобогащения ОФ "Распадская" (г. Междуреченск Кемеровской области, РФ) установлено, что использование ультрафлокулярной обработки дает нижеследующие преимущества при извлечении тонкодисперсного угля методом седиментации в радиальном сгустителе: • снижение расхода флокулянтов – в 2,5-3,5 раза. • увеличение извлечения угольного концентрата из хвостов на 23…26%. • уменьшение зольности концентрата, извлекаемого из хвостов с 18 до 12%. • уменьшение влажности пресс-фильтрационного кека концентрата, извлекаемого из хвостов с 40 до 35%

    Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): Impact on dust physico-chemical and radiative properties.

    Get PDF
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) in 2008, the mixing of the urban pollution plume of Dakar (Senegal) with mineral dust was studied in detail using the German research aircraft Falcon which was equipped with a nadir-looking high spectral resolution lidar (HSRL) and extensive aerosol in situ instrumentation. The mineral dust layer as well as the urban pollution plume were probed remotely by the HSRL and in situ. Back trajectory analyses were used to attribute aerosol samples to source regions.We found that the emission from the region of Dakar increased the aerosol optical depth (532 nm) from approximately 0.30 over sea and over land east of Dakar to 0.35 in the city outflow. In the urban area, local black carbon (BC) emissions, or soot respectively, contributed more than 75% to aerosol absorption at 530 nm. In the dust layer, the single-scattering albedo at 530 nm was 0.96 â�� 0.99, whereas we found a value of 0.908 �± 0.018 for the aerosol dominated by urban pollution. After 6h of transport over the North Atlantic, the externally mixed mode of secondary aerosol particles had almost completely vanished, whereas the BC agglomerates (soot) were still externally mixed with mineral dust particles

    Regional Saharan dust modelling during the SAMUM 2006 campaign

    Get PDF
    The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods

    Get PDF
    Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12–29 ng m−2 s−1. The simulation results come close to the upper range of the measurements with an average value of 47 ng m−2 s−1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area
    corecore