195 research outputs found

    Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    Full text link
    A systematic study of 2-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A ~ 70-80 region is performed using the projected shell model approach. The study includes Br-, Rb-, and Y-isotopes with N = Z+2, and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N = Z nucleus, 74Rb using the concept of spontaneous symmetry breaking is also presented.Comment: 14 pages, 7 figures, final version accepted by Phys. Rev.

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    Utilization of intravenous lidocaine infusion for the treatment of refractory chronic pain

    Get PDF
    Context: Chronic pain accounts for one of the most common reasons patients seek medical care. The financial burden of chronic pain on health care is seen by direct financial cost and resource utilization. Many risk factors may contribute to chronic pain, but there is no definite risk. Managing chronic pain is a balance between maximally alleviating symptoms by utilizing a therapeutic regimen that is safe for long-term use. Currently, non-opioid analgesics, NSAIDs, and opioids are some of the medical treatment options, but these have numerous adverse effects and may not be the best option for long-term use. However, Lidocaine can achieve both central and peripheral analgesic effects with relatively few side effects, whichmaybe an idealcompoundfor managing chronic pain. Evidence Acquisition: This is a Narrative Review. Results: Infusion of lidocaine (2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide), an amino-amide compound, is emerging as a promising option to fill the therapeutic void for treatment of chronic pain. Numerous studies have outlined dosing protocols for lidocaine infusion for the management of perioperative pain, outlined below. While there are slight variations in these different protocols, they all center around a similar dosing regimen to administer a bolus to reach a rapid steady state, followed by infusion for up to 72 hours to maintain the therapeutic analgesic effects. Conclusions: Lidocaine may be a promising pharmacologic solution with a low side effect profile that provides central and peripheral analgesia. Even though the multifaceted mechanism is not entirely understood yet, lidocainemaybe a promising novel remedy in treating chronic pain in various conditions. © 2020, Author(s)

    A Historiometric Examination of Machiavellianism and a New Taxonomy of Leadership

    Get PDF
    Although researchers have extensively examined the relationship between charismatic leadership and Machiavellianism (Deluga, 2001; Gardner & Avolio, 1995; House & Howell, 1992), there has been a lack of investigation of Machiavellianism in relation to alternative forms of outstanding leadership. Thus, the purpose of this investigation was to examine the relationship between Machiavellianism and a new taxonomy of outstanding leadership comprised of charismatic, ideological, and pragmatic leaders. Using an historiometric approach, raters assessed Machiavellianism via the communications of 120 outstanding leaders in organizations across the domains of business, political, military, and religious institutions. Academic biographies were used to assess twelve general performance measures as well as twelve general controls and five communication specific controls. The results indicated that differing levels of Machiavellianism is evidenced across the differing leader types as well as differing leader orientation. Additionally, Machiavellianism appears negatively related to performance, though less so when type and orientation are taken into account.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore