84 research outputs found

    DEP and AFO Regulate Reproductive Habit in Rice

    Get PDF
    Sexual reproduction is essential for the life cycle of most angiosperms. However, pseudovivipary is an important reproductive strategy in some grasses. In this mode of reproduction, asexual propagules are produced in place of sexual reproductive structures. However, the molecular mechanism of pseudovivipary still remains a mystery. In this work, we found three naturally occurring mutants in rice, namely, phoenix (pho), degenerative palea (dep), and abnormal floral organs (afo). Genetic analysis of them indicated that the stable pseudovivipary mutant pho was a double mutant containing both a Mendelian mutation in DEP and a non-Mendelian mutation in AFO. Further map-based cloning and microarray analysis revealed that dep mutant was caused by a genetic alteration in OsMADS15 while afo was caused by an epigenetic mutation in OsMADS1. Thus, OsMADS1 and OsMADS15 are both required to ensure sexual reproduction in rice and mutations of them lead to the switch of reproductive habit from sexual to asexual in rice. For the first time, our results reveal two regulators for sexual and asexual reproduction modes in flowering plants. In addition, our findings also make it possible to manipulate the reproductive strategy of plants, at least in rice

    Measuring changes in Schlemm’s canal and trabecular meshwork in different accommodation states in myopia children: an observational study

    Get PDF
    Abstract Purpose: Studies were designed to evaluate changes in the size of the Schlemm's Canal (SC) and trabecular meshwork(TM) during accommodation stimuli and cycloplegia states in myopic children. Methods: 34 children were enrolled. A -6D accommodation stimulus was achieved by looking at an optotype through a mirror. Cycloplegia state was induced with 1% tropicamide. Two states were confirmed by measuring the central lens thickness(CLT), the anterior chamber depth and the pupil diameter. The size of the Schlemm's Canal (SC) and Trabecular Meshwork(TM) was measured using swept-source optical coherence tomography. And the associations between the change of the SC and the CLT were analyzed. Results: When compared with the relaxation state, under -6D accommodation stimuli, the size of SC increased significantly: the SC area (SCA) amplified from 6371±2517μm2 to 7824±2727 μm2; the SC length (SCL) from 249±10 μm to 295±12 μm, and SC width (SCW) from 27±9 μm to 31±8 μm. Under cycloplegia state, the SCA reduced to 5009±2028 μm2; the SCL to 212±μm and the SCW to 22±5 μm. In addition, the changed areas of SCA (r=0. 35; P=0.0007), SCL (r=0. 251; P=0.0172), and SCW (r=0. 253; P=0.016) were significantly correlated with the change in CLT. However, the size of TM did not change substantially when compared with the relaxation state. Only the TM length (TML) increased from 562±45μm to 587±47μm after -6D accommodation stimulus. Conclusion: SC size enlarges after -6D accommodation stimuli and shrinks under cycloplegia. However, for TM, only the TM length increase under accommodation stimulus state. KEYWORDS: Schlemm’s Canal, Trabecular Meshwork, accommodatio

    Two euAGAMOUS genes control C-function in Medicago truncatula

    Get PDF
    [EN] C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.This work was funded by grants BIO2009-08134 and BIO2012-39849-C02-01 from the Spanish Ministry of Economy and Competitiveness and the Ramon y Cajal Program (RYC-2007-00627 to CGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serwatowska, J.; Roque Mesa, EM.; Gómez Mena, MC.; Constantin, GD.; Wen, J.; Mysore, KS.; Lund, OS.... (2014). Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS ONE. 9(8):103770-1-103770-12. https://doi.org/10.1371/journal.pone.0103770S103770-1103770-1298Prunet, N., & Jack, T. P. (2013). Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Flower Development, 3-33. doi:10.1007/978-1-4614-9408-9_1Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21(1), 73-79. doi:10.1016/j.semcdb.2009.10.005Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal, 61(6), 1014-1028. doi:10.1111/j.1365-313x.2009.04065.xHeijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box Genes and Floral Development: the Dark Side. Journal of Experimental Botany, 63(15), 5397-5404. doi:10.1093/jxb/ers233Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. doi:10.1038/346035a0Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rPinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics, 166(2), 1011-1023. doi:10.1534/genetics.166.2.1011Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25(7), 637-646. doi:10.1002/bies.10292Zahn, L. M., Leebens-Mack, J. H., Arrington, J. M., Hu, Y., Landherr, L. L., dePamphilis, C. W., … Ma, H. (2006). Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evolution Development, 8(1), 30-45. doi:10.1111/j.1525-142x.2006.05073.xFerrandiz, C. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development, 5(3), 484-495. doi:10.1101/gad.5.3.484Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xKapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S., & Takatsuji, H. (2002). Role of petuniapMADS3in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal, 32(1), 115-127. doi:10.1046/j.1365-313x.2002.01402.xPan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2), 163-173. doi:10.1105/tpc.6.2.163Dreni, L., & Kater, M. M. (2013). MADSreloaded: evolution of theAGAMOUSsubfamily genes. New Phytologist, 201(3), 717-732. doi:10.1111/nph.12555Brunner, A. M. (2000). Plant Molecular Biology, 44(5), 619-634. doi:10.1023/a:1026550205851Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of Multiple AGAMOUS-Like Genes in Male and Female Flowers of Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39(7), 701-710. doi:10.1093/oxfordjournals.pcp.a029424Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., … Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1), 51-62. doi:10.1046/j.1365-313x.1999.00351.xDong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Hofer, J. M., & Noel Ellis, T. (2014). Developmental specialisations in the legume family. Current Opinion in Plant Biology, 17, 153-158. doi:10.1016/j.pbi.2013.11.014Fourquin, C., del Cerro, C., Victoria, F. C., Vialette-Guiraud, A., de Oliveira, A. C., & Ferrándiz, C. (2013). A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus. Plant Physiology, 162(2), 907-917. doi:10.1104/pp.113.217570Hewitt EJ (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureau.Cheng, X., Wang, M., Lee, H.-K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2013). An efficient reverse genetics platform in the model legumeMedicago truncatula. New Phytologist, 201(3), 1065-1076. doi:10.1111/nph.12575D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.xTadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.xCheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Elisabeth Johansen, I., & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 40(4), 622-631. doi:10.1111/j.1365-313x.2004.02233.xWesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xGuerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy R, editor. Plant Molecular Biology. Oxford, UK: Bios Scientific Publishers, Academic Press. pp. 121–147.Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBenlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.xRoque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., … Cañas, L. A. (2012). Functional specialization of duplicated AP3-like genes inMedicago truncatula. The Plant Journal, 73(4), 663-675. doi:10.1111/tpj.12068Flanagan, C. A., Hu, Y., & Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant Journal, 10(2), 343-353. doi:10.1046/j.1365-313x.1996.10020343.xSieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365. doi:10.1105/tpc.9.3.355Busch, M. A. (1999). Activation of a Floral Homeotic Gene in Arabidopsis. Science, 285(5427), 585-587. doi:10.1126/science.285.5427.585Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345-349. doi:10.1016/j.virusres.2008.04.005Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M., & Yanofsky, M. F. (1992). Manipulation of flower structure in transgenic tobacco. Cell, 71(1), 133-143. doi:10.1016/0092-8674(92)90272-eMizukami, Y., & Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. doi:10.1016/0092-8674(92)90271-dCannon, S. B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., … Young, N. D. (2006). Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences, 103(40), 14959-14964. doi:10.1073/pnas.0603228103Young, N. D., & Bharti, A. K. (2012). Genome-Enabled Insights into Legume Biology. Annual Review of Plant Biology, 63(1), 283-305. doi:10.1146/annurev-arplant-042110-103754Jager, M. (2003). MADS-Box Genes in Ginkgo biloba and the Evolution of the AGAMOUS Family. Molecular Biology and Evolution, 20(5), 842-854. doi:10.1093/molbev/msg089Johansen, B., Pedersen, L. B., Skipper, M., & Frederiksen, S. (2002). MADS-box gene evolution—structure and transcription patterns. Molecular Phylogenetics and Evolution, 23(3), 458-480. doi:10.1016/s1055-7903(02)00032-5Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., … Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce ( Picea mariana ) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. doi:10.1046/j.1365-313x.1998.00250.xParcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395(6702), 561-566. doi:10.1038/26903Causier, B., Bradley, D., Cook, H., & Davies, B. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. The Plant Journal, 58(1), 41-52. doi:10.1111/j.1365-313x.2008.03759.xAiroldi, C. A., & Davies, B. (2012). Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. Journal of Genetics and Genomics, 39(4), 157-165. doi:10.1016/j.jgg.2012.02.008Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M. M., & Angenent, G. C. (1998). Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. The Plant Cell, 10(2), 171-182. doi:10.1105/tpc.10.2.171Tsuchimoto, S., van der Krol, A. R., & Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. doi:10.1105/tpc.5.8.843Airoldi, C. A., Bergonzi, S., & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences, 107(44), 18898-18902. doi:10.1073/pnas.1009050107Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in Action: Following Function in Duplicated Floral Homeotic Genes. Current Biology, 15(16), 1508-1512. doi:10.1016/j.cub.2005.07.063Birchler, J. A., & Veitia, R. A. (2007). The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. The Plant Cell, 19(2), 395-402. doi:10.1105/tpc.106.049338Birchler, J. A., & Veitia, R. A. (2009). The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 186(1), 54-62. doi:10.1111/j.1469-8137.2009.03087.xEdger, P. P., & Pires, J. C. (2009). Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 17(5), 699-717. doi:10.1007/s10577-009-9055-9Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.368140

    Effects of transcutaneous electrical nerve stimulation (TENS) on arterial stiffness and blood pressure in resistant hypertensive individuals: study protocol for a randomized controlled trial

    Full text link
    corecore