17 research outputs found

    Corn stover harvest N and energy budgets in central Iowa.

    Get PDF
    Harvesting corn stover removes N from the fields, but its effect on subsurface drainage and other N losses is uncertain. We used the Root Zone Water Quality Model (RZWQM) to examine N losses with 0 (NRR) or 50% (RR) corn residue removal within a corn and soybean rotation over a 10-yr period. In general, all simulations used the same pre-plant or post-emergence N fertilizer rate (200 kg ha−1 yr−1). Simulated annual corn yields averaged 10.7 Mg ha−1 for the post emergence applications (NRRpost and RRpost), and 9.5 and 9.4 Mg ha−1 yr−1 for NRRpre and RRpre. Average total N input during corn years was 19.3 kg N ha−1 greater for NRRpre compared to RRpre due to additional N in surface residues, but drainage N loss was only 1.1 kg N ha−1 yr−1 greater for NRRpre. Post-emergence N application with no residue removal (NRRpost) reduced average drainage N loss by 16.5 kg ha−1 yr−1 compared to pre-plant N fertilization (NRRpre). The farm-gate net energy ratio was greatest for RRpost and lowest for NRRpre (14.1 and 10.4 MJ output per MJ input) while greenhouse gas intensity was lowest for RRpost and highest for NRRpre (11.7 and 17.3 g CO2-eq. MJ−1 output). Similar to published studies, the simulations showed little difference in N2O emissions between scenarios, decreased microbial immobilization for RR compared to NRR, and small soil carbon changes over the 10-yr simulation. In contrast to several previous modeling studies, the crop yield and N lost to drain flow were nearly the same between NRR and RR without supplemental N applied to replace N removed with corn stover. These results are important to optimizing the energy and nitrogen budgets associated with corn stover harvest and for developing a sustainable bioenergy industry.This article is published as Malone, R. W., S. Herbstritt, L. Ma, T. L. Richard, R. Cibin, P. W. Gassman, H. H. Zhang et al. "Corn stover harvest N and energy budgets in central Iowa." Science of the Total Environment 663 (2019): 776-792. DOI: 0.1016/j.scitotenv.2019.01.328. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
    corecore