1,854 research outputs found

    Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices

    Full text link
    We investigate the level-density σ(x)\sigma(x) and level-spacing distribution p(s)p(s) of random matrices M=AFMM=AF\neq M^{\dagger} where FF is a (diagonal) inner-product and AA is a random, real symmetric or complex Hermitian matrix with independent entries drawn from a probability distribution q(x)q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix MM is self-adjoint with respect to FF and thus has purely real eigenvalues. We find that the level density σF(x)\sigma_F(x) is independent of the underlying distribution q(x)q(x), is solely characterized by FF, and therefore generalizes Wigner's semicircle distribution σW(x)\sigma_W(x). We find that the level-spacing distributions p(s)p(s) are independent of q(x)q(x), are dependent upon the inner-product FF and whether AA is real or complex, and therefore generalize the Wigner's surmise for level spacing. Our results suggest FF-dependent generalizations of the well-known Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary Ensemble (GUE) classes.Comment: 5 pages, 5 figures, revised tex

    Marshall Space Flight Center Faculty Fellowship Program

    Get PDF
    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates

    Numerical approach to the Schrodinger equation in momentum space

    Full text link
    The treatment of the time-independent Schrodinger equation in real-space is an indispensable part of introductory quantum mechanics. In contrast, the Schrodinger equation in momentum space is an integral equation that is not readily amenable to an analytical solution and is rarely taught. We present a numerical approach to the Schrodinger equation in momentum space. After a suitable discretization process, we obtain the Hamiltonian matrix and diagonalize it numerically. By considering a few examples, we show that this approach is ideal for exploring bound-states in a localized potential and complements the traditional (analytical or numerical) treatment of the Schrodinger equation in real-space.Comment: 14 pages, 4 figures, several changes and one figure correctio

    Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation

    Get PDF
    The actor model eases the definition of concurrent programs with non uniform behaviors. Static analysis of such a model was previously done in a data-flow oriented way, with type systems. This approach was based on constraint set resolution and was not able to deal with precise properties for communications of behaviors. We present here a new approach, control-flow oriented, based on the abstract interpretation framework, able to deal with communication of behaviors. Within our new analyses, we are able to verify most of the previous properties we observed as well as new ones, principally based on occurrence counting

    The effect of salts on the viscosity and wilt-inducing capacity of the capsular polysaccharide of Erwinia amylovora

    Get PDF
    Water solutions of the capsular polysaccharide (EPS) of Erwinia amylovora exhibit long flow times (t) in a kinematic viscometer. Addition of salts to the solutions greatly decreases the flow times. The salt-induced decrease in flow time is directly related to the ionic strength of the solution and independent of the ionic species present. The salt effect does not result from a change in the molecular weight of the EPS. Addition of NaCl, at concentrations sufficient to reduce the flow time, decreases or eliminates the capacity of EPS solution to cause wilt in the cut shoot assay. Treatment of EPS with either of two depolymerase phages decreases both t and the molecular weight of the EPS (from 100 × 106 D to less than 4 × 104 D). Such phage-produced fragments (ψdp) retain their capacity to cause wilt in the cut shoot assay but, like EPS, lose this ability in the presence of salts. Radiolabeled EPS and ψdp is retained at the end of the cut shoot when wilt occurs but is distributed throughout the shoot when wilt is inhibited by salt

    A second order cone formulation of continuous CTA model

    Get PDF
    The final publication is available at link.springer.comIn this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the l1 -CTA using Pseudo-Huber func- tion was introduced in an attempt to combine positive characteristics of both l1 -CTA and l2 -CTA. All three models can be solved using appro- priate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic op- timization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and l1 -CTA as Second-Order Cone (SOC) op- timization problems and test the validity of the approach on the small example of two-dimensional tabular data set.Peer ReviewedPostprint (author's final draft

    Candidate Coronagraphic Detections of Protoplanetary Disks around Four Young Stars

    Full text link
    We present potential detections of H-band scattered light emission around four young star, selected from a total sample of 45 young stars observed with the CIAO coronagraph of the Subaru telescope. Two CTTS, CI Tau and DI Cep, and two WTTS, LkCa 14 and RXJ 0338.3+1020 were detected. In all four cases, the extended emission is within the area of the residual PSF halo, and is revealed only through careful data reduction. We compare the observed extended emission with simulations of the scattered light emission, to evaluate the plausibility and nature of the detected emission.Comment: 9 Figures, 40 page

    Exponential martingales and changes of measure for counting processes

    Full text link
    We give sufficient criteria for the Dol\'eans-Dade exponential of a stochastic integral with respect to a counting process local martingale to be a true martingale. The criteria are adapted particularly to the case of counting processes and are sufficiently weak to be useful and verifiable, as we illustrate by several examples. In particular, the criteria allow for the construction of for example nonexplosive Hawkes processes as well as counting processes with stochastic intensities depending on diffusion processes
    corecore