1,539 research outputs found

    Evolutionary framework with reinforcement learning-based mutation adaptation

    Get PDF
    Although several multi-operator and multi-method approaches for solving optimization problems have been proposed, their performances are not consistent for a wide range of optimization problems. Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their designs are undertaken mainly through trial and error. This research proposes an improved optimization framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning is used to automatically choose the best differential evolution operator. To judge the performance of the proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with 10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world application data set has also been solved. Several experiments are designed to analyze the effects of different components of the proposed framework, with the best variant compared with a number of state-of-the-art algorithms. The experimental results show that the proposed algorithm is able to outperform all the others considered.</p

    Variation in gas chromatography (GC) analysis in setting up laboratory protocols for waste to energy novel fixed bed reactor setups

    Full text link
    Gas Chromatography coupled with Mass Spectrometry (GC/MS) has been applied in various analytical chemistry works. However, to fine tune a system that can serve the purposes of pyrolysis oil identification has proven to be a laborious effort, especially when considering the fact that no standard protocol exists for such analysis. In addition, obtained products were yielded from a newly commissioned unit with a unique and novel design. In this study, a US patent office claimed reactor [SULTAN-1, Pyrolysis Reactor System for the Conversion and Analysis of Organic Solid Waste, Patent application number: 15,487,351] that degrades polyolefinc virgin and waste materials to obtain petroleum refinery and petrochemical feedstock, has been commissioned. The reactor produces three distinct physical states of matter products accumulated as testing specimens, i.e. solids, gaseous and oil. The samples analysed in this work were of the gas and oil produced by pyrolysis of end of life tyre (ELTs) shavings that required to have a special recipe to work with in the laboratory. Various MS cords were utilised and experimental setups to fine tune the process, and special emphasis was given on the gas samples variation in this communication. To reach the desired analysis results with high repeatability, a plethora of experiences of lab personnel and laboratory-based experimental work was accumulated. Laboratory protocols were also setup for this work. These will be detailed along the process execution which yielded a standard laboratory best practice analytical method as part of the State of Kuwait newly initiated Government Initiative project

    Hemodynamics optimization during off-pump coronary artery bypass: the ‘no compression' technique

    Get PDF
    Objective: Heart manipulation during OPCAB may cause hemodynamical instability in particular for access to the posterior and lateral walls. The ‘no compression' technique involves enucleation of the heart without any compression on the cavities, and stabilization of the target area with a suction device. The impact of this technique on hemodynamics is assessed. Methods: In order to analyze a homogeneous group, 26 consecutive patients with triple grafts, one to each side of the heart in the same sequential order (posterior, lateral and anterior wall successively) were selected. Heart rate (HR), mean pulmonary arterial pressure (PAP, mmHg), pulmonary capillary wedge pressure (PCWP, mmHg), mean arterial pressure (MAP, mmHg), cardiac output index (COI, l/min per m2), and central venous saturation (SvO2,%) were monitored. A coronary shunt was used for all the anastomoses. Results: HR was stable with baseline value of 60±10 and the highest value for the anterior wall, 63.6±8 (P=0.23). PAP and PCWP exhibited their highest increase, when compared with baseline, for the lateral wall, 23.9±4.7 vs. 20.7±6.2 (P=0.06), and 17.2±4.7 vs. 14.9±5.6 (P=0.16), respectively. MAP, COI and SvO2, exhibited their largest drop, when compared with baseline, for the lateral wall too, 73.1±9.1 vs. 77.1±7.5 (P=0.12), 1.99±0.47 vs. 2.26±0.55 (P=0.09), and 70.5±8.4 vs. 74.8±9.3 (P=0.12), respectively. Conclusions: None of the hemodynamical parameter differed significantly from baseline value for all three territories. While hemodynamics was perfectly maintained during the posterior and anterior walls revascularization, exposure of the lateral wall led to marginal changes onl

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups

    How does early defoliation influence the morphophysiology and biochemical characteristics of maize?

    Get PDF
    Defoliation is a type of mechanical stress, and few studies have investigated this process in the early stages of maize development. Pest attacks, hail and machinery traffic have increased in recent decades, thus increasing this stress and potentially leading to losses. Furthermore, there are corn production systems in Brazil where early defoliation naturally occurs. Thus, the objective of this study was to determine the morphophysiological and biochemical changes in maize subjected to early defoliation and their effects on recovery from this stress. The experiment was performed in pots, and the plants were subjected to two treatments at the four fully expanded leaf stage: without defoliation (control) and with defoliation. Morphometric parameters, such as gas exchange, leaf pigment and biomolecule content, phytohormone con- tent, root morphology and leaf anatomy, were evaluated at seven and fourteen days after defoliation. Compared with the control plants, the defoliated corn plants were shorter in height, stem diameter, length, surface area, root diameter and volume, dry biomass and leaf anatomy. However, photosynthesis, chlorophyll content and nutrient content were similar in both treatments. After seven days of treatment, the amino acid content increased in the defoliated plants, and after fourteen days, the reducing sugars, amino acids and proteins decreased in these plants. The levels of gibberellins and salicylic acid were greater in plants subjected to defoliation. The reestablishment of corn plants after defoliation occurred through the action of gibberellins and salicylic acid, which promoted the growth of aboveground biomass, maintenance of chlorophylls and gas exchange. The reallocation of amino acids and reducing sugars also contributes to the formation of new leaf primordia in defoliated plants

    On-chip NIR optical spectrometer based on polymeric waveguide and metallic nano-structures

    Get PDF
    In this work, we report about optical spectrometry using gold nano-structures printed on a polymer based integrated optical waveguide. The optical waveguide is a single mode buried waveguide, having dimensions of 3x2.2µm 2 . It is made from a combination of photo-polymerizable materials and is fabricated by photolithography on a glass substrate. To sense the electric field inside the waveguide, a gold nano-coupler array of thin lines (50 nm thick and 8 µm length) is embedded on top of the aforementioned waveguide. They are produced by E-beam lithography. The array pitch is 2.872 µm and the number of lines 564, which yields an array of 1.619 mm length. The device is enclosed with a glass superstrate to prevent it from dust and destruction. Both waveguide ports are polished and the output port in particular, is coated with a thin gold layer to assimilate a mirror and hence, it enables the creation of stationary waves inside the structure. The measurement procedure involves light injection using a single mode fiber carrying both visible light (658nm) and infrared light (785nm), used for alignment and measurement purposes respectively. Stationary waves generated inside the guide constitute the spatial interferogram. Locally, light is out-coupled using the nano-couplers and allows measuring the interferogram structure. The resulting pattern is imaged by a vision system involving an opticalmicroscope with a digital camera mounted on-top of it. Signal processing, mainly based on Fast Fourier transform is performed on the captured signal to extract the spectral content of the measured signal

    Multijunction Solar Cell Development and Production at Spectrolab

    Get PDF
    Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5
    corecore