61 research outputs found

    Estimation of Activity Related Energy Expenditure and Resting Metabolic Rate in Freely Moving Mice from Indirect Calorimetry Data

    Get PDF
    Physical activity (PA) is a main determinant of total energy expenditure (TEE) and has been suggested to play a key role in body weight regulation. However, thus far it has been challenging to determine what part of the expended energy is due to activity in freely moving subjects. We developed a computational method to estimate activity related energy expenditure (AEE) and resting metabolic rate (RMR) in mice from activity and indirect calorimetry data. The method is based on penalised spline regression and takes the time dependency of the RMR into account. In addition, estimates of AEE and RMR are corrected for the regression dilution bias that results from inaccurate PA measurements. We evaluated the performance of our method based on 500 simulated metabolic chamber datasets and compared it to that of conventional methods. It was found that for a sample time of 10 minutes the penalised spline model estimated the time-dependent RMR with 1.7 times higher accuracy than the Kalman filter and with 2.7 times higher accuracy than linear regression. We assessed the applicability of our method on experimental data in a case study involving high fat diet fed male and female C57Bl/6J mice. We found that TEE in male mice was higher due to a difference in RMR while AEE levels were similar in both groups, even though female mice were more active. Interestingly, the higher activity did not result in a difference in AEE because female mice had a lower caloric cost of activity, which was likely due to their lower body weight. In conclusion, TEE decomposition by means of penalised spline regression provides robust estimates of the time-dependent AEE and RMR and can be applied to data generated with generic metabolic chamber and indirect calorimetry set-ups

    The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice

    Get PDF
    Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism

    Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Get PDF
    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity

    A comparison of the metabolic effects of sustained strenuous activity in polar environments on men and women

    Get PDF
    This study investigates differences in pre- to post-expedition energy expenditure, substrate utilisation and body composition, between the all-male Spear17 (SP-17) and all-female Ice Maiden (IM) transantarctic expeditions (IM: N = 6, 61 days, 1700 km; SP-17: N = 5, 67 days, 1750 km). Energy expenditure and substrate utilisation were measured by a standardised 36 h calorimetry protocol; body composition was determined using air displacement plethysmography. Energy balance calculation were used to assess the physical challenge. There was difference in the daily energy expenditure (IM: 4,939 kcal day−1; SP-17: 6,461 kcal day−1, p = 0.004); differences related to physical activity were small, but statistically significant (IM = 2,282 kcal day−1; SP-17 = 3,174 kcal day−1; p = 0.004). Bodyweight loss was modest (IM = 7.8%, SP-17 = 6.5%; p > 0.05) as was fat loss (IM = 30.4%, SP-17 = 40.4%; p > 0.05). Lean tissue weight change was statistically significant (IM = − 2.5%, SP-17 = + 1.0%; p = 0.05). No difference was found in resting or sleeping energy expenditure, normalised to lean tissue weight (p > 0.05); nor in energy expenditure when exercising at 80, 100 and 120 steps min−1, normalised to body weight (p > 0.05). Similarly, no difference was found in the change in normalised substrate utilisation for any of the activities (p > 0.05). Analysis suggested that higher daily energy expenditures for the men in Spear-17 was the result of higher physical demands resulting in a reduced demand for energy to thermoregulate compared to the women in Ice Maiden. The lack of differences between men and women in the change in energy expenditure and substrate utilisation, suggests no sex difference in response to exposure to extreme environments

    Regulation of Appetite and Body Weight

    No full text
    corecore