148 research outputs found

    CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism

    Get PDF
    Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α′ catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings

    Dynamics of direct inter-pack encounters in endangered African wild dogs

    Get PDF
    Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging

    Group formation under limited resources: narrow basin of equality

    Get PDF
    The formation of groups in competition and the aggressive interactions between them are ubiquitous phenomena in society. These include student activities in the classroom, election races between political parties, and intensifying trade wars between countries. Why do individuals form themselves into groups? What is the optimal size of groups? And how does the group size distribution affect resource allocations? These questions have been the subjects of intense research in economics, political science, sociology, and ethology. In this study, we explore the group-size effects on the formation of groups and resource allocations from an economic standpoint. While being in a large group is generally advantageous in competition, an increase in the management costs would set an upper bound to the individual benefit of members. Under such counteracting size effects, we consider the dynamics of group formation in which people seek a conservative measure to reduce their possible maximum loss. We are especially interested in the effects of group size on social inequalities at both group and individual level in resource allocation. Our findings show that the low positive size-effect and the high negative size-effect result in different types of social inequalities. We conclude, from the relation between the inequality measures and group distributions predicted within the model, that overall social equality only can be achieved within a narrow region where two counteracting size-effects are balanced

    A runaway PRH/HHEX-Notch3 positive feedback loop drives cholangiocarcinoma and determines response to CDK4/6 inhibition

    Get PDF
    Aberrant Notch and Wnt signalling are known drivers of cholangiocarcinoma (CCA) but the underlying factors that initiate and maintain these pathways are not known. Here we show that the PRH/HHEX transcription factor forms a positive transcriptional feedback loop with Notch3 that is critical in CCA. PRH/HHEX expression was elevated in CCA and depletion of PRH reduced CCA tumour growth in a xenograft model. Overexpression of PRH in primary human biliary epithelial cells was sufficient to increase cell proliferation and produce an invasive phenotype. Interrogation of the gene networks regulated by PRH and Notch3 revealed that unlike Notch3, PRH directly activated canonical Wnt signalling. These data indicate that hyperactivation of Notch and Wnt signalling is independent of the underlying mutational landscape and has a common origin in dysregulation of PRH. Moreover, they suggest new therapeutic options based on the dependence of specific Wnt, Notch, and CDK4/6 inhibitors on PRH activity

    Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA.</p> <p>Results</p> <p>A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content.</p> <p>Conclusions</p> <p>The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies.</p

    Dynamics of Wind Setdown at Suez and the Eastern Nile Delta

    Get PDF
    BACKGROUND: Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. METHODOLOGY/PRINCIPAL FINDINGS: This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. CONCLUSIONS/SIGNIFICANCE: Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3-4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore

    Biophysical Studies of the Membrane-Embedded and Cytoplasmic Forms of the Glucose-Specific Enzyme II of the E. coli Phosphotransferase System (PTS)

    Get PDF
    The glucose Enzyme II transporter complex of the Escherichia coli phosphotransferase system (PTS) exists in at least two physically distinct forms: a membrane-integrated dimeric form, and a cytoplasmic monomeric form, but little is known about the physical states of these enzyme forms. Six approaches were used to evaluate protein-protein and protein-lipid interactions in this system. Fluorescence energy transfer (FRET) using MBP-IIGlc-YFP and MBP-IIGlc-CFP revealed that the homodimeric Enzyme II complex in cell membranes is stable (FRET-) but can be dissociated and reassociated to the heterodimer only in the presence of Triton X100 (FRET+). The monomeric species could form a heterodimeric species (FRET+) by incubation and purification without detergent exposure. Formaldehyde cross linking studies, conducted both in vivo and in vitro, revealed that the dimeric MBP-IIGlc activity decreased dramatically with increasing formaldehyde concentrations due to both aggregation and activity loss, but that the monomeric MBP-IIGlc retained activity more effectively in response to the same formaldehyde treatments, and little or no aggregation was observed. Electron microscopy of MBP-IIGlc indicated that the dimeric form is larger than the monomeric form. Dynamic light scattering confirmed this conclusion and provided quantitation. NMR analyses provided strong evidence that the dimeric form is present primarily in a lipid bilayer while the monomeric form is present as micelles. Finally, lipid analyses of the different fractions revealed that the three lipid species (PE, PG and CL) are present in all fractions, but the monomeric micellar structure contains a higher percentage of anionic lipids (PG & CL) while the dimeric bilayer form has a higher percentage of zwitterion lipids (PE). Additionally, evidence for a minor dimeric micellar species, possibly an intermediate between the monomeric micellar and the dimeric bilayer forms, is presented. These results provide convincing evidence for interconvertible physical forms of Enzyme-IIGlc

    Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia

    Get PDF
    More than a half of the northern Asian pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. While there has been considerable recent progress in studying mitochondrial variation in eastern Asia and America at the complete genome resolution, little comparable data is available for regions such as southern Siberia – the area where most of northern Asian haplogroups, including C and D, likely diversified. This gap in our knowledge causes a serious barrier for progress in understanding the demographic pre-history of northern Eurasia in general. Here we describe the phylogeography of haplogroups C and D in the populations of northern and eastern Asia. We have analyzed 770 samples from haplogroups C and D (174 and 596, respectively) at high resolution, including 182 novel complete mtDNA sequences representing haplogroups C and D (83 and 99, respectively). The present-day variation of haplogroups C and D suggests that these mtDNA clades expanded before the Last Glacial Maximum (LGM), with their oldest lineages being present in the eastern Asia. Unlike in eastern Asia, most of the northern Asian variants of haplogroups C and D began the expansion after the LGM, thus pointing to post-glacial re-colonization of northern Asia. Our results show that both haplogroups were involved in migrations, from eastern Asia and southern Siberia to eastern and northeastern Europe, likely during the middle Holocene

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore