
ARTICLE

Group formation under limited resources: narrow
basin of equality
Dongryul Lee1 & Pilwon Kim2

ABSTRACT The formation of groups in competition and the aggressive interactions

between them are ubiquitous phenomena in society. These include student activities in the

classroom, election races between political parties, and intensifying trade wars between

countries. Why do individuals form themselves into groups? What is the optimal size of

groups? And how does the group size distribution affect resource allocations? These ques-

tions have been the subjects of intense research in economics, political science, sociology,

and ethology. In this study, we explore the group-size effects on the formation of groups and

resource allocations from an economic standpoint. While being in a large group is generally

advantageous in competition, an increase in the management costs would set an upper

bound to the individual benefit of members. Under such counteracting size effects, we

consider the dynamics of group formation in which people seek a conservative measure to

reduce their possible maximum loss. We are especially interested in the effects of group size

on social inequalities at both group and individual level in resource allocation. Our findings

show that the low positive size-effect and the high negative size-effect result in different

types of social inequalities. We conclude, from the relation between the inequality measures

and group distributions predicted within the model, that overall social equality only can be

achieved within a narrow region where two counteracting size-effects are balanced.
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Introduction

Group formation is an inherent and fundamental activity in
every human society. Human jointly form various groups
to cooperate for their survival and compete with other

groups, for living in a group provides individuals with potential
benefits such as shared duties, protection from outsiders, and
efficiency of resource exploitation (Clutton-Brock, 2002; Pulliam
and Caraco, 1984; Bertram, 1978; Clark and Mangel, 1986). In
this sense, there have been intense game-theoretic researches on
how coalition forms and are organized to conduct diverse activ-
ities (Demange and Wooders, 2005). One of major difficulties in
studying group formation in a competitive situation lies in i)
nonlinearity and nonmonotonicity of group-size effects and ii)
complex nature of aggregation dynamics.

The benefits of forming groups tends to grow increasingly with
group size: a group with twice as many members can easily earn
more than twice. For example, collaborations through a division
of labour in a large group can be more efficient and systematic
than in a small group, rendering the large group more competi-
tive in a contest. Also, the large group is associated with greater
diversification of specific risks, which leads to economic benefits
(Cassidy et al., 2015; Harris, 2010; Kitchen et al., 2004; Markham
et al., 2012; Palmer, 2004; Scarry, 2013). However, there are also
negative nonlinear effects of group size. For instance, bureaucratic
inefficiency in overall group management tends to grow faster
with group size: establishing communication and cooperation
between members becomes a challenging task in the large group
(Brym and Lie, 2006; Olson, 2009; Nosenzo et al., 2015). Resource
allocation in the large group is likely to be less efficient than in the
small group (Krause, 1994; Bednekoff and Lima, 2004). These
negative effects will suppress emergence of excessively large
groups. Thus, taking into account these nonlinear positive and
negative effects of group size, people make decision on merging,
leaving, and creating their new groups in order to maximize their
shares.

Besides the nonlinear and nonmonotonic group-size effects,
what makes it difficult to study the group formation is the
complex nature of aggregation dynamics resulting from the fact
that members' shares in a group depend not only on their own
group’s size, but also on other groups’ sizes. Especially in game
theory, finding a stationary distribution of aggregation has been
dealt as a fundamental problem (Hart and Kurz, 1983; Bernheim
et al., 1987; Bloch, 1996; Sanchez-Pages, 2007). In Hart and Kurz
(1983), strong equilibrium is suggested as the notion for stability
of a coalition structure in which no group of players, whether
from the same coalition or from different ones, can get together
and form new coalition(s) in such way that they are all better off.
There have been several attempts to modify the equilibrium
concept to allow more various group formations at equilibrium,
such as "coalition-Proof Nash equilibrium" which requires self-
enforcing agreements among group of players in (Bernheim et al.,
1987). However, although the strong Nash equilibrium and its
variations provide a robust and appealing stability concept, they
are too restrictive and may rarely exist in many situations.

In this paper, we develop a minimal group formation model to
study the dynamics of group formation with consideration for the
group-size effects, and show various group distributions and
resource allocations appearing as our equilibrium outcomes. Our
work consists of two parts: (i) constructing an individual payoff
function that reflects the group-size effects and (ii) introducing
aggregation dynamics that induces reasonable stationary
distributions.

The study focuses on how resource allocations and social
inequalities can be attributed to the counteracting group-size
effects within aggregation dynamics. For doing this, we differ-
entiate the inequality between groups from that between

individuals. For example, we can observe, from the model, that a
group of 20% of population takes 80% of the whole resource in a
certain case, as stated in the Pareto principle. However, this does
not necessarily imply that there is as much rich-poor gap exists
between individuals. This discrepancy is due to interaction
between the two (positive and negative) size effects, and makes it
hard for a social planner to achieve economic efficiency and
equality.

Within the context of the model, the social planner can control
resource allocation through adjusting the both positive and
negative group-size effects. The positive effect may be reduced by
setting a limit to the maximum resource that can be taken by a
single group. Implementing regulations to support relatively small
groups in a contest is another way to reduce the positive effect.
On the contrary, assigning a penalty directly according to group
size, like imposing a progressive tax, results in enhancing the
negative size effect. While the both approaches are to suppress
emergence of excessively large groups, reducing the positive effect
and enhancing the negative one are subtly different. This paper
differentiates it and investigates under what condition common
social inequalities are created, such as the Pareto principle and
social polarization. Especially, we want to specify range of the size
effects where social equalities at both group and individual levels
can be achieved.

Since the payoff function we develop is very simple and works
for general cases, there is often no Nash-type equilibrium unless
further constraints on group dynamics is assumed. The approach
taken in this work is based on an observation for large population
that people take a conservative strategy when uncertainty is high
(Machina, 1992). Since the number of all possible combinations
of group formation increases explosively with population size and
thus it is not plausible for each individual to evaluate all options,
we rather assume that people take a conservative strategy to
reduce their possible maximum loss, sequentially creating groups.
Besides that this sequential maximin strategy may reflect more
realistic behaviour in large population, another benefit of the
approach is that the corresponding stationary equilibriums always
exist and are easily computable.

Size effects in contests
We consider a contest situation in which N players vie for getting
a resource R. Let G= (n1,…,nK) denote a group distribution
which is K disjoint partitions of N persons satisfyingPK

i¼1 nk ¼ N . The normalized group distribution with respect to
the total population is G ¼ n1; � � � ; nKð Þ where ni ¼ ni=N . Let gk
be the share of group k and

PK
i¼1 gk ¼ R. Similarly, the nor-

malized group share is gi ¼ gi=R.
In intergroup contests among group-living animals, group size

is a common measure of resource-holding potential and a group’s
chances of winning increases with its size roth. In order to
describe the group's gaining under such size effect, we adopt
Tullock-form (or logit-form) contest success function as a rule of
dividing the resource among the groups.1 Specifically, Group k
obtains the following share of the resource:

gk Gð Þ ¼ R
nαk

PK
i¼1

nαi

; α � 1: ð1Þ

As seen in (1), the share for each group depends on the size of
that group and those of the other groups as well.

The parameter α is an exponent of a positive size effect, which
represents the degree of effectiveness of the group size in the
contest. For α= 1, the share of each group is proportional to the
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relative size of the group to the sum of all groups' sizes. For α > 1,
nαk exhibits increasing returns to scale and the size of each group
has a greater effect on its share than for α= 1.

The members in a group equally share their group's gain.2 Let
πk represent the payoff for each player in group k. It is then
defined as follows, given a group distribution G= (n1,…,nK):

πk Gð Þ ¼ gk Gð Þ 1

nβk
; β � 1

¼ R
nαk

PK
i¼1

nαi

1

nβk
: ð2Þ

Here the parameter β is an exponent that represents ineffi-
ciency in the distributing process of the group's gain. One can
also associate β with a tax rate imposed by a social planner. If β=
1, then there is no negative size effect and the group's gain is fully
transferred to its members. On the contrary, for a larger value of
β, the members have to take inevitable loss in distribution. As
seen in (1) and (2), the group share gk monotonically increases
with the group size nk, while the individual payoff πk does not
necessarily increases due to the counteracting effects of α and β.
Taking these into account, the players seek to form groups that
maximize their payoffs.

Sequential maximin group formation
In real-world group formation in large population, avoiding risk
would be a major variable in decision-making. We assume that
people pursue a secure strategy that ensures their share at a level.
This is the maximin strategy and leads people to sequentially
form groups. At first, a group of people seek to form a coalition
that maximizes the payoff for each member under the pre-
sumption that all the other people may form groups which cause
the greatest harm to their group. Once their group is formed,
those people in the group are locked in, i.e., they do not attract
new members or resolve the group whatsoever. Next, the second
group is formed among the remaining people in the same man-
ner, taking the formation of the first group as given. This is
continued until there is no remaining members.3

Let us define the above process of group formation more
precisely. Let S(n1,…,nk,*) denote a set of all possible group
structures that contain the formerly established k groups with
group sizes n1,…,nk, respectively. For example, if the total num-
ber of players N is 6, S (2,1,*) is a set of all possible group
structures which contain group 1 with its size 2 and group 2 with
its size 1:

S 2; 1;�ð Þ ¼ 2; 1; 3ð Þ; 2; 1; 2; 1ð Þ; 2; 1; 1; 2ð Þ; 2; 1; 1; 1; 1ð Þf g: ð3Þ

Now we are ready to consider the players' sequential group
formation. If n persons try to make a first group, they prepare for
the worst case that the remaining N= n people form group(s)
against their group. So, their expectation for the individual gain is
pn=minG∈S(n,*)π1(G). The number of the first group, n, will be
determined at which pn is maximized. In other words,

n1 ¼ argmax
n

min
G2S n;�ð Þ

π1 Gð Þ ð4Þ

Those, who do not form group yet, assume that the members
of the established group(s) stick to their "safe" maximin profits
and will not be resolved. The second group of people therefore try
to maximize their expectation for the possible worst profit
minG2S n1;n;�ð Þ π2 Gð Þ with fixed n1. Hence the group size n2 is

determined as

n2 ¼ argmax
n

min
G2S n1;n;�ð Þ

π2 Gð Þ ð5Þ

This process continues until there is no remaining players or
the last player is only left. We say that the group structure
resulting form this sequential process equipped with the maximin
strategy of the players "sequential maximin equilibrium".

Definition(Sequential maximin equilibrium) A group structure
G= (n1,…,nk) is said to be a if

nk ¼ argmax
n

min
G2S n1;���;nk�1;n;�ð Þ

πk Gð Þ; k ¼ 1; 2; � � � ;K; ð6Þ

where we set n0= 0 for consistency of the notation.
It is easily confirmed that a group distribution at sequential

maximin equilibrium always exists for any payoff function πk.
This is a striking difference in that strong Nash or coalition-proof
Nash equilibria rarely exist, or hard to find even when they exist.
In the next section, sequential maximin equilibria are evaluated
with various values of parameters for as many as 1000 people.

Group formation under various size effects
In order to deal with group formation under the size effects, we
now investigate a group distribution at a sequential maximin
equilibrium with respect to the payoff (2). In the simple case of α
=β= 1, there are no size effects and the payoff becomes a con-
stant πk (G)= R/N for any group distribution G. This implies that
all possible group distributions are equally attractive and people
are indifferent between staying alone and forming any group. If α
is lager than 1, there appears a unique group distribution for each
value of α. Especially, if there is only the small positive size effect
(α → 1+, β= 1), then people forms two groups of which size ratio
is 78:22. (For more detail, refer to Supplement.)

Suppose the inefficiency of within-group distribution dom-
inates. This means that the negative size effect is much larger than
the positive one, or, α≪ β. In this case, people may have no merit
in forming groups and determine to remain as singletons.

Group formation begins to appear when the two size effects are
competing and almost cancelling each other. For example, let α=
1.4 and β= 1.5 for N= 10. Then a group distribution at a
sequential maximin equilibrium is (4, 1, 1, 1, 1, 1, 1). That is, once
four persons make a group first, the remaining six decide to stay
as singletons. Setting α= β= 1.5 makes people feel more attrac-
tive to forming groups and results in a group distribution (5, 2, 1,
1, 1). If we further raise α to 1.6, they end up with three groups, as
(5, 3, 2).

As α increases further, the group-size effect starts to outweigh
the inefficiency of within-group distribution, driving individuals
to prefer larger groups. When the effectiveness of the group size
in the contest grows extremely large, the contest becomes like an
auction in which the largest group takes all the resource as long as
it outnumbers other groups at least by one. This implies that the
largest one does not necessarily keep growing and eventually
converges to m+ 1 as α →∞, where N= 2m or N= 2m+ 1.

We assume α, β > 1 from here on, for more practical size-
dependent group formation. From the nature of the negative size
effect based on within-group management, a social planner’s
controlling β over whole groups may not be feasible. We, there-
fore, assume that the social planner mostly intervenes at the
positive size effect for a given range of β. Since it is not
straightforward to derive how the size effects diversifies the group
distribution in a general way, we verify the following three special
cases of small, middle, and large values of α.

Theorem 1 Suppose β > 1. The group distribution is as follows
according to the values of α and β.
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a. If α < β/2 then G= (1, 1,…,1) i.e., G ¼ 1
N ;

1
N ; � � � ; 1N

� �
.

b. If α= β then G ¼ 1
2 ;

1
4 ;

1
8 ; � � �

� �
.

c. As α →∞, G ! 1
2

� �þ
; 1

2

� ��� �
.

In Fig. 1, the size of the largest group is graphed according the
various values of α. The example fixes the negative size effect at β
= 2 for the population N= 1000. Figure 1(a) depicts the change
of the largest group when α grows toward β= 2. People do not
form any group until α gets close enough to β. At a value around

1.87, the first group suddenly appears. Its size increases with α,
but the increasing tendency changes from consecutive emer-
gences of the second and third groups. Figure 2(a) extends the
graph in a log scale to show convergence of the group size in the
limit. As stated in Theorem 1, the group size converges to the half
of the population as α →∞, maintaining largest portion of the
population all the way.

Inequalities at group and individual levels. While a variety of
group distributions appear according to the size effects, it is
notable that they do not directly reflect proportion of the indi-
vidual payoffs between the groups. In the previous example of β
= 1 in which the normalized group distribution approaches to
(0.78, 0.22) as α → 1+, the corresponding payoffs π1 and π2 con-
verge to the same value. Similarly, the group distribution (0.5,
0.25, 0.125,…) from α= β > 1 leads to a equal individual payoff in
all groups regardless of size. On the contrary, if α is much greater
than β, the population breaks into two of the almost same size but
a slightly bigger group occupies the most resource. This implies
that a member in one group gets almost double of what he/she
deserves if it were under mild size effects, while a member in the
other group gets nothing.

Our major concern in this work is to investigate the influence
of the group size effects on social inequalities in terms of resource
allocations among groups and individuals. In order to do this, we
formulate two indices that measure social inequalities in our
model at group and individual levels, respectively: the Pareto ratio
and the top-to-bottom ratio.

Pareto noted that approximately 80% of Italy's wealth is owned
by only 20% of the population and many social and physical
phenomena have empirically exhibited such ratios as well. In the
context of our model, the Pareto principle holds if a group's gain
is gk ¼ 0:8 while its proportion in the population is nk ¼ 0:2. In
this light, we define a Pareto ratio as

rP ¼ max
k

gk
nk

2 1;N½ � ð7Þ

to measure how unevenly resource is occupied by groups. If rP ≥ 4
for a group distribution, then the Pareto principle holds and
inequality in resource allocation is severe at group level.

It is notable that what a group earns may differ from what the
members earn. Even if a group takes a large portion of the
resource, due to the within-group distributional inefficiency, the
members in that group may get less than members in the other
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Fig. 1 Size of the largest group according to the values of α: The population
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groups. Such ironic situation is not properly captured by the
Pareto ratio. Therefore introducing a top-to-bottom ratio

rT ¼ max
i;j

πi
πj

2 1;1½ Þ ð8Þ

is reasonable to measure inequality at individual level. Here rT
means the ratio between the highest earner and the lowest earner.
If rT= 1, then everyone is equal in resource allocation regardless
of groups that they belong to. If rT=∞, then there is an
individual who receives nothing at all.

Once again, we consider the situation that the social planner
adjusts the positive size effect α for the given negative size effect β
> 1. The following is confirmed for the values of two inequality
indices rP and rT for the cases dealt in Theorem 1.

Theorem 2 Suppose β > 1. The inequality indices are as follows
according to the values of α and β.

a. If α < β/2 then rP= rT= 1.
b. If α= β then rP= 2−21-α and rT= 1.
c. As α →∞, rP → 2 and rT →∞.

One can see in Theorems 2 (a) and (c) two extreme cases with
large size effects. For excessively large negative size effect as in (a),
no one tries to form a group and people remain as homogeneous
singletons, resulting in both rP and rT at the minimum value 1.
On the contrary, if the positive size effect grows large, then the
winner-takes-all situation starts to occur. A group slightly larger
than 50% of the population takes almost entire resource, making
the Pareto ratio close to 2. Simultaneously the members in the
other groups get almost nothing, which implies an extremely
large top-to-bottom ratio.

If α happens to be exactly the same as β, the individual
inequality is minimized and the Pareto ratio is kept at a decent
value near 2. It was noted in the previous section that a variety of
group distributions can appear with two size effects closely
competing. This implies that the inequality indices also sensitively
react to the change of the size effects around α≈β. Figure 2 shows
the graphs of rP and rT with respect to α, for β fixed at 2. If α is
less than β, there is commonly a mixture of groups and
singletons. While most people mind inefficiency of within-
group distribution and insist on staying alone, some people start
to get together. Note that the grouper's individual payoff may not
be large, or may be even smaller than that of singletons due to the
negative size effect. The first emergent group is not usually big,
but without rival groups, the group's gain overwhelms other
singletons' by far. This results in a high Pareto ratio. In Fig. 2, the
Pareto ratio rP leaps as high as 12 where α is at around 1.88. This
inequality at a group level gradually disappears as α gets closer to
β, since other groups are born one by one and start to compete in
size.

If α is raised further beyond β, the social inequality reappears
again, but at a different level. In this case, no matter how much
the members lose from inefficient within-group distribution, their
ultimate share depends on the external situation, the whole group
distribution. The gap between groups tends to grow rapidly with
α. If a group does not maintain competitiveness in relative size, it
eventually fails to gain as much resource as its members can
share. This produces extremely poor individuals, leading the top-
to-bottom ratio rT high.

Slight deviation from the balance α= β may result in social
inequality either at group level or individual level. If the negative
size effect dominates over the positive one, there is a possibility
that the Pareto distribution occurs. On the other hand, if the
positive size effect exceeds the negative one, we may have the
large rich-poor gap. All in all, one should maintain α≈β in a
relatively narrow region as illustrated in Fig. 2, to keep the values

of rP and rT reasonably small and achieve social equalities at both
group and individual levels.

The social planner may control resource allocation by
intervening the both positive and negative group size effects.
Cutting down a size-based tax imposed on groups reduces β and
increases the mean individual payoff, but it may lead to an ironic
situation that the rich-poor gap is much widened. In general, the
positive size effect α is more manageable factor in social planning.
The effect can be reduced by setting a limit to the maximum
resource that can be taken by a single group or by implementing
regulations to support relatively small groups. However, suppres-
sing α overly may incubate only a few small coalitions which
monopolize most of the resource and create a 80/20 situation.

Discussion
In this work, the individual payoff is designed to reflect the
positive and negative size effect to investigate how people form
groups and compete for the resource under the group-size effects.
We assume that groups are sequentially created by people seeking
a conservative strategy to reduce their possible maximum loss. It
turned out that the various group distributions occur depending
on the size effects.

We are especially interested in a relation between social
inequalities in resource distribution and the size effects in group
formation. If the size effect that influences on the inter-group
competition is too high, it results in severe individual inequality.
On the contrary, if individuals in a large group fail to sufficiently
receive what their group earns due to inefficient management, it
ironically leads to unequal distribution at group level. Since these
two size effects counteract and cancel each other in a range, the
social planner should keep them in balance by limiting larger one
properly. Referring the two inequality indices, the social planner
can choose either to support small groups in a contest, or to
reduce the progressive tax imposed on each group.

Here we assumed that the resource R is fixed in a contest and
not influenced by the group size. However, especially for natural
resources, the total exploitable amount may be multiplied by
collective work of the population as well. The future study will
extend the current work to cases where group distribution also
affects production of resources. In addition, the sequential max-
imin group formation that is proposed as large-group dynamics
in this work can be applied to group-related problems created by
various social and economic interactions, once it is combined
with the corresponding payoff functions.

Received: 25 August 2017 Accepted: 25 June 2018

Notes
1 Employing other types of contest success functions do not give us any qualitative
change in our results and implications.

2 In our model, the group members do not make any additional contributions or efforts
in order to increase their group share in the contest, other than gathering together and
forming the group. Thus, it would be natural to assume that all the members in a
group share the resource equally.

3 The ordering of the players' forming groups would be endogenously determined
within the model if we assume that the players are different in their endowments or
backgrounds. Hence, the sequential group formation game with the heterogeneous
players must be an interesting, important research topic, and we leave it for our future
work.
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