1,623 research outputs found

    Intraseasonal Cross-Shelf Variability of Hypoxia along the Newport, Oregon, Hydrographic Line

    Get PDF
    AbstractObservations of hypoxia, dissolved oxygen (DO) concentrations &lt; 1.4 ml L−1, off the central Oregon coast vary in duration and spatial extent throughout each upwelling season. Underwater glider measurements along the Newport hydrographic line (NH-Line) reveal cross-shelf DO gradients at a horizontal resolution nearly 30 times greater than previous ship-based station sampling. Two prevalent hypoxic locations are identified along the NH-Line, as is a midshelf region with less severe hypoxia north of Stonewall Bank. Intraseasonal cross-shelf variability is investigated with 10 sequential glider lines and a midshelf mooring time series during the 2011 upwelling season. The cross-sectional area of hypoxia observed in the glider lines ranges from 0 to 1.41 km2. The vertical extent of hypoxia in the water column agrees well with the bottom mixed layer height. Midshelf mooring water velocities show that cross-shelf advection cannot account for the increase in outer-shelf hypoxia observed in the glider sequence. This change is attributed to an along-shelf DO gradient of −0.72 ml L−1 over 2.58 km or 0.28 ml L−1 km−1. In early July of the 2011 upwelling season, near-bottom cross-shelf currents reverse direction as an onshore flow at 30-m depth is observed. This shoaling of the return flow depth throughout the season, as the equatorward coastal jet moves offshore, results in a more retentive near-bottom environment more vulnerable to hypoxia. Slope Burger numbers calculated across the season do not reconcile this return flow depth change, providing evidence that simplified two-dimensional upwelling model assumptions do not hold in this location.</jats:p

    A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger

    Full text link
    We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings

    Quantum and classical vibrational relaxation dynamics of N-methylacetamide on ab initio potential energy surfaces

    Full text link
    Employing extensive quantum-chemical calculations at the DFT/B3LYP and MP2 level, a quartic force field of isolated N-methylacetamide is constructed. Taking into account 24 vibrational degrees of freedom, the model is employed to perform numerically exact vibrational configuration interaction calculations of the vibrational energy relaxation of the amide I mode. It is found that the energy transfer pathways may sensitively depend on details of the theoretical description. Moreover, the exact reference calculations were used to study the applicability and accuracy of (i) the quasiclassical trajectory method, (ii) time-dependent second-order perturbation theory, and (iii) the instantaneous normal mode description of frequency fluctuations. Based on the results, several strategies to describe vibrational energy relaxation in biomolecular systems are discussed.Comment: 18 pages, 6 figures, submitted to J. Phys. Chem.

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).

    Molecular structure of the largemouth bass (Micropterus salmoides) Myf5 gene and its effect on skeletal muscle growth

    Get PDF
    Myogenic Regulatory Factors (MRFs), a family of basic helix-loop-helix (bHLH) transcription factors, play important roles in regulating skeletal muscle development and growth. Myf5, the primary factor of MRFs, initiates myogenesis. Its expression pattern during somitomyogenesis in some fish has been revealed. To further study its effect on fish muscle during postembryonic growth, characterization and function analysis of myf5 cDNA were carried out in largemouth bass. The 1,093 bp cDNA sequence was identified by RT-PCR and 3′RACE, then the ORF of Myf5 cDNA was cloned into the expression vector pcDNA3.1(−)/mycHisB. The recombinant plasmid pcDNA3.1(−)/mycHisB-Myf5 was injected into the dorsal muscle of tilapias. RT-PCR and histochemical results showed that the exogenous gene was transcribed and translated in vivo. Its effect on muscle growth focused on myofiber hypertrophy in white muscle 60 days post injection. This indicated that overexpression of Myf5 can promote myogenesis during the fish muscle postembryonic growth period

    Construction of a Mean Square Error Adaptive Euler--Maruyama Method with Applications in Multilevel Monte Carlo

    Full text link
    A formal mean square error expansion (MSE) is derived for Euler--Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise a posteriori adaptive time stepping Euler--Maruyama method for numerical solutions of SDE, and the resulting method is incorporated into a multilevel Monte Carlo (MLMC) method for weak approximations of SDE. This gives an efficient MSE adaptive MLMC method for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC method is shown to outperform the uniform time stepping MLMC method by orders of magnitude, producing output whose error with high probability is bounded by TOL>0 at the near-optimal MLMC cost rate O(TOL^{-2}log(TOL)^4).Comment: 43 pages, 12 figure

    New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay

    Get PDF
    Background Susceptibility-weighted imaging (SWI) is a relatively new magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification, as a new source of contrast enhancement. This pictorial review is aimed at illustrating and discussing its main clinical applications. Methods SWI is based on high-resolution, threedimensional (3D), fully velocity-compensated gradientecho sequences using both magnitude and phase images. A phase mask obtained from the MR phase images is multiplied with magnitude images in order to increase the visualisation of the smaller veins and other sources of susceptibility effects, which are displayed at best after postprocessing of the 3D dataset with the minimal intensity projection (minIP) algorithm. Results SWI is very useful in detecting cerebral microbleeds in ageing and occult low-flow vascular malformations, in characterising brain tumours and degenerative diseases of the brain, and in recognizing calcifications in various pathological conditions. The phase images are especially useful in differentiating between paramagnetic susceptibility effects of blood and diamagnetic effects of calcium. SWI can also be used to evaluate changes in iron content in different neurodegenerative disorders. Conclusion SWI is useful in differentiating and characterising diverse brain disorders

    Ecoregional Analysis of Nearshore Sea-Surface Temperature in the North Pacific

    Get PDF
    The quantification and description of sea surface temperature (SST) is critically important because it can influence the distribution, migration, and invasion of marine species; furthermore, SSTs are expected to be affected by climate change. To better understand present temperature regimes, we assembled a 29-year nearshore time series of mean monthly SSTs along the North Pacific coastline using remotely-sensed satellite data collected with the Advanced Very High Resolution Radiometer (AVHRR) instrument. We then used the dataset to describe nearshore (<20 km offshore) SST patterns of 16 North Pacific ecoregions delineated by the Marine Ecoregions of the World (MEOW) hierarchical schema. Annual mean temperature varied from 3.8°C along the Kamchatka ecoregion to 24.8°C in the Cortezian ecoregion. There are smaller annual ranges and less variability in SST in the Northeast Pacific relative to the Northwest Pacific. Within the 16 ecoregions, 31–94% of the variance in SST is explained by the annual cycle, with the annual cycle explaining the least variation in the Northern California ecoregion and the most variation in the Yellow Sea ecoregion. Clustering on mean monthly SSTs of each ecoregion showed a clear break between the ecoregions within the Warm and Cold Temperate provinces of the MEOW schema, though several of the ecoregions contained within the provinces did not show a significant difference in mean seasonal temperature patterns. Comparison of these temperature patterns shared some similarities and differences with previous biogeographic classifications and the Large Marine Ecosystems (LMEs). Finally, we provide a web link to the processed data for use by other researchers
    corecore