33 research outputs found

    Conjugate Refractive-Reflective Homogeniser in a 500x Cassegrain Concentrator: Design and Limits

    Get PDF
    This is the author accepted manuscript. The final version is available from IET via the DOI in this recordThere is another ORE record for this publication: http://hdl.handle.net/10871/19792In this study, we present the conjugate refractive reflective homogeniser (CRRH) to be used in a 500× Cassegrain photovoltaic concentrator. The CRRH is a dielectric crossed v-trough lined with a reflective film whilst maintaining an air gap between them. This air gap between the two surfaces helps in trapping the scattered light from the refractive geometry and ensures both total internal reflection and standard reflection of the escaped rays. A 10-42% drop in optical efficiency has been shown to occur due to varying the surface roughness of the homogeniser in these ray trace simulations for the Cassegrain setup. The CRRH increased the overall optical efficiency by a maximum of 7.75% in comparison with that of a standard refractive homogeniser simulated within the same concentrator system. The acceptance angle and flux distribution of these homogenisers was also investigated. The simple shape of the CRRH ensures easy manufacturing and produces a relatively uniform irradiance distribution on the receiver. The theoretical benefit of the CRRH is also validated via practical measurements. Further research is required but a 6.7% power increase was measured under a 1000 W/m2 solar simulator at normal incidence for the experimental test.Department of Science and Technology (DST), IndiaEngineering and Physical Sciences Research Council (EPSRC

    Conjugate refractive–reflective homogeniser in a 500x Cassegrain concentrator: design and limits

    Get PDF
    In this study, we present the conjugate refractive reflective homogeniser (CRRH) to be used in a 500× Cassegrain photovoltaic concentrator. The CRRH is a dielectric crossed v-trough lined with a reflective film whilst maintaining an air gap between them. This air gap between the two surfaces helps in trapping the scattered light from the refractive geometry and ensures both total internal reflection and standard reflection of the escaped rays. A 10–42% drop in optical efficiency has been shown to occur due to varying the surface roughness of the homogeniser in these ray trace simulations for the Cassegrain setup. The CRRH increased the overall optical efficiency by a maximum of 7.75% in comparison with that of a standard refractive homogeniser simulated within the same concentrator system. The acceptance angle and flux distribution of these homogenisers was also investigated. The simple shape of the CRRH ensures easy manufacturing and produces a relatively uniform irradiance distribution on the receiver. The theoretical benefit of the CRRH is also validated via practical measurements. Further research is required but a 6.7% power increase was measured under a 1000 W/m2 solar simulator at normal incidence for the experimental test

    Prototype fabrication and experimental investigation of a conjugate refractive reflective homogeniser in a cassegrain concentrator

    Get PDF
    The conjugate refractive reflective homogeniser (CRRH) is experimentally tested within a cassegrain concentrator of geometrical concentration ratio 500× and its power output compared to the theoretical predictions of a 7.76% increase. I–V traces are taken at various angles of incidence and experimental results showed a maximum of 4.5% increase in power output using the CRRH instead of its purely refractive counterpart. The CRRH utilises both total internal reflection (TIR) within its core refractive medium (sylguard) and an outer reflective film (with an air gap between) to direct more rays towards the receiver. The reflective film captures scattered refracted light which is caused by non-ideal surface finishes of the refractive medium. The CRRH prototype utilises a 3D printed support which is thermally tested, withstanding temperatures of up to 60 °C but deforming at >100 °C. A maximum temperature of 226.3 °C was reached within the closed system at the focal spot of the concentrated light. The material properties are presented, in particular the transmittance of sylguard 184 is shown to be dependent on thickness but not significantly on temperature.Utilising both TIR and standard reflection can be applied to other geometries other than the homogeniser presented here. This could be a simple but effective method to increase the power of many concentrator photovoltaics

    Theoretical investigation considering manufacturing errors of a high concentrating photovoltaic of cassegrain design and its experimental validation

    Get PDF
    A compact high concentrating photovoltaic module based on cassegrain optics is presented; consisting of a primary parabolic reflector, secondary inverse parabolic reflector and a third stage homogeniser. The effect of parabolic curvatures, reflector separation distance and the homogeniser’s height and width on the acceptance angle has been investigated for optimisation. Simulated optical efficiencies of 84.82–81.89% over a range of ±1° tracking error and 55.49% at a tracking error of ±1.5° were obtained. The final singular module measures 169 mm in height and 230 mm in width (not including structural components such as cover glass). The primary reflector dish has a focal length of 200 mm and is a focal with the secondary inverse reflector which has a focal length of 70 mm. The transparent homogenising optic has a height of 70 mm, an entry aperture of 30 × 30 mm and an output aperture of 10 × 10 mm to match the solar cell. This study includes an analysis of the optical efficiency, acceptance angle, irradiance distribution and component errors for this type of concentrator. In particular material stability and the surface error of the homogeniser proved to be detrimental in theoretical and experimental testing – reducing the optical efficiency to ∼40%. This study proves the importance of material choice and simulating optical surface quality, not simply assuming ideal conditions. In the experimental testing, the acceptance angle followed simulation results as did the optical efficiency of the primary and secondary reflectors. The optical efficiency of the system against increasing solar misalignment angles is given for the theoretical and experimental work carried out

    Conjugate refractive–reflective homogeniser in a 500x Cassegrain concentrator: design and limits

    Get PDF
    In this study, we present the conjugate refractive reflective homogeniser (CRRH) to be used in a 500× Cassegrain photovoltaic concentrator. The CRRH is a dielectric crossed v-trough lined with a reflective film whilst maintaining an air gap between them. This air gap between the two surfaces helps in trapping the scattered light from the refractive geometry and ensures both total internal reflection and standard reflection of the escaped rays. A 10–42% drop in optical efficiency has been shown to occur due to varying the surface roughness of the homogeniser in these ray trace simulations for the Cassegrain setup. The CRRH increased the overall optical efficiency by a maximum of 7.75% in comparison with that of a standard refractive homogeniser simulated within the same concentrator system. The acceptance angle and flux distribution of these homogenisers was also investigated. The simple shape of the CRRH ensures easy manufacturing and produces a relatively uniform irradiance distribution on the receiver. The theoretical benefit of the CRRH is also validated via practical measurements. Further research is required but a 6.7% power increase was measured under a 1000 W/m2 solar simulator at normal incidence for the experimental test

    Prototype fabrication and experimental investigation of a conjugate refractive reflective homogeniser in a cassegrain concentrator

    Get PDF
    The conjugate refractive reflective homogeniser (CRRH) is experimentally tested within a cassegrain concentrator of geometrical concentration ratio 500× and its power output compared to the theoretical predictions of a 7.76% increase. I–V traces are taken at various angles of incidence and experimental results showed a maximum of 4.5% increase in power output using the CRRH instead of its purely refractive counterpart. The CRRH utilises both total internal reflection (TIR) within its core refractive medium (sylguard) and an outer reflective film (with an air gap between) to direct more rays towards the receiver. The reflective film captures scattered refracted light which is caused by non-ideal surface finishes of the refractive medium. The CRRH prototype utilises a 3D printed support which is thermally tested, withstanding temperatures of up to 60 °C but deforming at >100 °C. A maximum temperature of 226.3 °C was reached within the closed system at the focal spot of the concentrated light. The material properties are presented, in particular the transmittance of sylguard 184 is shown to be dependent on thickness but not significantly on temperature.Utilising both TIR and standard reflection can be applied to other geometries other than the homogeniser presented here. This could be a simple but effective method to increase the power of many concentrator photovoltaics

    Theoretical investigation considering manufacturing errors of a high concentrating photovoltaic of cassegrain design and its experimental validation

    Get PDF
    A compact high concentrating photovoltaic module based on cassegrain optics is presented; consisting of a primary parabolic reflector, secondary inverse parabolic reflector and a third stage homogeniser. The effect of parabolic curvatures, reflector separation distance and the homogeniser’s height and width on the acceptance angle has been investigated for optimisation. Simulated optical efficiencies of 84.82–81.89% over a range of ±1° tracking error and 55.49% at a tracking error of ±1.5° were obtained. The final singular module measures 169 mm in height and 230 mm in width (not including structural components such as cover glass). The primary reflector dish has a focal length of 200 mm and is a focal with the secondary inverse reflector which has a focal length of 70 mm. The transparent homogenising optic has a height of 70 mm, an entry aperture of 30 × 30 mm and an output aperture of 10 × 10 mm to match the solar cell. This study includes an analysis of the optical efficiency, acceptance angle, irradiance distribution and component errors for this type of concentrator. In particular material stability and the surface error of the homogeniser proved to be detrimental in theoretical and experimental testing – reducing the optical efficiency to ∼40%. This study proves the importance of material choice and simulating optical surface quality, not simply assuming ideal conditions. In the experimental testing, the acceptance angle followed simulation results as did the optical efficiency of the primary and secondary reflectors. The optical efficiency of the system against increasing solar misalignment angles is given for the theoretical and experimental work carried out
    corecore