1,036 research outputs found
A Novel Method for High-Dimensional Anatomical Mapping of Extra-Axial Cerebrospinal Fluid: Application to the Infant Brain
Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development. Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid space surrounding the brain, is a promising marker in the early detection of young children at risk for neurodevelopmental disorders. Previous studies have focused on global EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific EA-CSF measurements, because no tools were previously available for extracting local EA-CSF measures suitable for localized cortical surface analysis. In this paper, we propose a novel framework for the localized, cortical surface-based analysis of EA-CSF. The proposed processing framework combines probabilistic brain tissue segmentation, cortical surface reconstruction, and streamline-based local EA-CSF quantification. The quantitative analysis of local EA-CSF was applied to a dataset of typically developing infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree of consistency in the spatial patterns of local EA-CSF across age using the proposed methods. Statistical analysis of local EA-CSF revealed several novel findings: several regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of age, and specific regions showed higher local EA-CSF in males compared to females. These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have been observed if only a global EA-CSF measure were utilized. The proposed methods are integrated into a freely available, open-source, cross-platform, user-friendly software tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging studies to investigate its role in typical and atypical brain development
Sleep onset problems and subcortical development in infants later diagnosed with autism spectrum disorder
Objective: Sleep patterns in children with autism spectrum disorder (ASD) appear to diverge from typical development in the second or third year of life. Little is known, however, about the occurrence of sleep problems in infants who later develop ASD and possible effects on early brain development. In a longitudinal neuroimaging study of infants at familial high or low risk for ASD, parent-reported sleep onset problems were examined in relation to subcortical brain volumes in the first 2 years of life. Methods: A total of 432 infants were included across three study groups: infants at high risk who developed ASD (N=71), infants at high risk who did not develop ASD (N=234), and infants at low risk (N=127). Sleep onset problem scores (derived from an infant temperament measure) were evaluated in relation to longitudinal high-resolution T1 and T2 structural imaging data acquired at 6, 12, and 24 months of age. Results: Sleep onset problems were more common at 6–12 months among infants who later developed ASD. Infant sleep onset problems were related to hippocampal volume trajectories from 6 to 24 months only for infants at high risk who developed ASD. Brain-sleep relationships were specific to the hippocampus; no significant relationships were found with volume trajectories of other subcortical structures examined (the amygdala, caudate, globus pallidus, putamen, and thalamus). Conclusions: These findings provide initial evidence that sleep onset problems in the first year of life precede ASD diagnosis and are associated with altered neurodevelopmental trajectories in infants at high familial risk who go on to develop ASD. If replicated, these findings could provide new insights into a potential role of sleep difficulties in the development of ASD
Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water
Excess phosphorous (P) in aquatic systems causes adverse environmental impacts including eutrophication. This study fabricated Fe(III) loaded chitosan-biochar composite fibers (FBC-N and FBC-C) from paper mill sludge biochar produced under N2 (BC-N) and CO2 (BC-C) conditions at 600 °C for adsorptive removal of phosphate from water. Investigations using SEM/EDX, XPS, Raman spectroscopy, and specific surface area measurement revealed the morphological and physico-chemical characteristics of the adsorbent. The Freundlich isotherm model well described the phosphate adsorption on BC-N, while the Redlich–Peterson model best fitted the data of three other adsorbents. The maximum adsorption capacities were 9.63, 8.56, 16.43, and 19.24 mg P g−1 for BC-N, BC-C, FBC-N, and FBC-C, respectively, indicating better adsorption by Fe(III) loaded chitosan-biochar composite fibers (FBCs) than pristine biochars. The pseudo-first-order kinetic model suitably explained the phosphate adsorption on BC-C and BC-N, while data of FBC-N and FBC-C followed the pseudo-second-order and Elovich model, respectively. Molecular level observations of the P K-edge XANES spectra confirmed that phosphate associated with iron (Fe) minerals (Fe-P) were the primary species in all the adsorbents. This study suggests that FBCs hold high potential as inexpensive and green adsorbents for remediating phosphate in contaminated water, and encourage resource recovery via bio-based management of hazardous waste
Electrooxidation of glucose by binder-free bimetallic Pd1Ptx/graphene aerogel/nickel foam composite electrodes with low metal loading in basic medium
Many 2D graphene-based catalysts for electrooxidation of glucose involved the use of binders and toxic reducing agents in the preparation of the electrodes, which potentially causes the masking of original activity of the electrocatalysts. In this study, a green method was developed to prepare binder-free 3D graphene aerogel/nickel foam electrodes in which bimetallic Pd-Pt NP alloy with different at% ratios were loaded on 3D graphene aerogel. The influence of Pd/Pt ratio (at%: 1:2.9, 1:1.31, 1:1.03), glucose concentration (30 mM, 75 mM, 300 mM, 500 mM) and NaOH concentration (0.1 M, 1 M) on electrooxidation of glucose were investigated. The catalytic activity of the electrodes was enhanced with increasing the Pd/Pt ratio from 1:2.9 to 1:1.03, and changing the NaOH/glucose concentration from 75 mM glucose/0.1 M NaOH to 300 mM glucose/1 M NaOH. The Pd1Pt1.03/GA/NF electrode achieved a high current density of 388.59 A g−1 under the 300 mM glucose/1 M NaOH condition. The stability of the electrodes was also evaluated over 1000 cycles. This study demonstrated that the Pd1Pt1.03/GA/NF electrode could be used as an anodic electrode in glucose-based fuel cells
Testing "microscopic" theories of glass-forming liquids
We assess the validity of "microscopic" approaches of glass-forming liquids
based on the sole k nowledge of the static pair density correlations. To do so
we apply them to a benchmark provided by two liquid models that share very
similar static pair density correlation functions while disp laying distinct
temperature evolutions of their relaxation times. We find that the approaches
are unsuccessful in describing the difference in the dynamical behavior of the
two models. Our study is not exhausti ve, and we have not tested the effect of
adding corrections by including for instance three-body density correlations.
Yet, our results appear strong enough to challenge the claim that the slowd own
of relaxation in glass-forming liquids, for which it is well established that
the changes of the static structure factor with temperature are small, can be
explained by "microscopic" appr oaches only requiring the static pair density
correlations as nontrivial input.Comment: 10 pages, 7 figs; Accepted to EPJE Special Issue on The Physics of
Glasses. Arxiv version contains an addendum to the appendix which does not
appear in published versio
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au
collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and
from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were
removed. The resulting non-photonic electron spectra are primarily due to the
semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification
factors were determined by comparison to non-photonic electrons in p+p
collisions. A significant suppression of electrons at high p_T is observed in
central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV
The transverse single-spin asymmetries of neutral pions and non-identified
charged hadrons have been measured at mid-rapidity in polarized proton-proton
collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T)
range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at
a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this
previously unexplored kinematic region are consistent with zero within
statistical errors of a few percent. In addition, the inclusive charged hadron
cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and
compared to NLO pQCD calculations. Successful description of the unpolarized
cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in
the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
- …