411 research outputs found

    The history of introduction of the African baobab (Adansonia digitata, Malvaceae: Bombacoideae) in the Indian subcontinent

    Get PDF
    To investigate the pathways of introduction of the African baobab, Adansonia digitata, to the Indian subcontinent, we examined 10 microsatellite loci in individuals from Africa, India, the Mascarenes and Malaysia, and matched this with historical evidence of human interactions between source and destination regions. Genetic analysis showed broad congruence of African clusters with biogeographic regions except along the Zambezi (Mozambique) and Kilwa (Tanzania), where populations included a mixture of individuals assigned to at least two different clusters. Individuals from West Africa, the Mascarenes, southeast India and Malaysia shared a cluster. Baobabs from western and central India clustered separately from Africa. Genetic diversity was lower in populations from the Indian subcontinent than in African populations, but the former contained private alleles. Phylogenetic analysis showed Indian populations were closest to those from the Mombasa-Dar es Salaam coast. The genetic results provide evidence of multiple introductions of African baobabs to the Indian subcontinent over a longer time period than previously assumed. Individuals belonging to different genetic clusters in Zambezi and Kilwa may reflect the history of trafficking captives from inland areas to supply the slave trade between the fifteenth and nineteenth centuries. Baobabs in the Mascarenes, southeast India and Malaysia indicate introduction from West Africa through eighteenth and nineteenth century European colonial networks

    Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint z = 2.5 galaxy

    Get PDF
    We report the serendipitous detection of a 0.2 L*, Lyα emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorption system (NHi=1016.94±0.10 cm−2) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalize over uncertainties in the shape and normalization of the ionizing radiation spectrum, we derive the total hydrogen column density NH=1019.4±0.3cm−2, and show that all the absorbing clouds are metal enriched, with Z = 0.1–0.6 Z⊙. These metallicities and the system's large velocity width (436 km s− 1) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of ∌5 M⊙ yr−1. Our photoionization model yields extremely small sizes (<100–500 pc) for the absorbing clouds, which we argue is typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a 1000-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM

    Plasma scale length effects on protons generated in ultra-intense laser–plasmas

    Get PDF
    The energy spectra of protons generated by ultra-intense (1020 W cm−2) laser interactions with a preformed plasma of scale length measured by shadowgraphy are presented. The effects of the preformed plasma on the proton beam temperature and the number of protons are evaluated. Two-dimensional EPOCH particle-in-cell code simulations of the proton spectra are found to be in agreement with measurements over a range of experimental parameter

    Second and Third Season QUaD Cosmic Microwave Background Temperature and Polarization Power Spectra

    Get PDF
    We report results from the second and third seasons of observation with the QUaD experiment. Angular power spectra of the cosmic microwave background are derived for both temperature and polarization at both 100 GHz and 150 GHz, and as cross-frequency spectra. All spectra are subjected to an extensive set of jackknife tests to probe for possible systematic contamination. For the implemented data cuts and processing technique such contamination is undetectable. We analyze the difference map formed between the 100 and 150 GHz bands and find no evidence of foreground contamination in polarization. The spectra are then combined to form a single set of results which are shown to be consistent with the prevailing LCDM model. The sensitivity of the polarization results is considerably better than that of any previous experiment— for the first time multiple acoustic peaks are detected in the E-mode power spectrum at high significance

    The QUAD Galactic Plane Survey 1: Maps and Analysis of Diffuse Emission

    Get PDF
    We present a survey of ~ 800 square degrees of the galactic plane observed with the QUaD telescope. The primary product of the survey are maps of Stokes I, Q and U parameters at 100 and 150 GHz, with spatial resolution 5 and 3.5 arcminutes respectively. Two regions are covered, spanning approximately 245 - 295° and 315 - 5° in galactic longitude l, and -4 < b < +4° in galactic latitude b. At 0:02° square pixel size, the median sensitivity is 74 and 107 kJy/sr at 100 GHz and 150 GHz respectively in I, and 98 and 120 kJy/sr for Q and U. In total intensity, we find an average spectral index of α = 2:35+-0:01(stat)+-0:02(sys) for |b| ≀1°, indicative of emission components other than thermal dust. A comparison to published dust, synchrotron and free-free models implies an excess of emission in the 100 GHz QUaD band, while better agreement is found at 150 GHz. A smaller excess is observed when comparing QUaD 100 GHz data to WMAP 5-year W band; in this case the excess is likely due to the wider bandwidth of QUaD. Combining the QUaD and WMAP data, a two-component spectral fit to the inner galactic plane (|b| ≀1°) yields mean spectral indices of αs = -0:32+-0:03 and αd = 2:84+-0:03; the former is interpreted as a combination of the spectral indices of synchrotron, free-free and dust, while the second is attributed largely to the thermal dust continuum. In the same galactic latitude range, the polarization data show a high degree of alignment perpendicular to the expected galactic magnetic field direction, and exhibit mean polarization fraction 1:38+-0:08(stat)+-0:1(sys)% at 100 GHz and 1:70+-0:06(stat)+-0:1(sys)% at 150 GHz. We find agreement in polarization fraction between QUaD 100 GHz and WMAP W band, the latter giving 1:1+-0:4%

    Methodology and Implementation of a Randomized Controlled Trial (RCT) for Early Post-concussion Rehabilitation: The Active Rehab Study

    Get PDF
    Background: Sports-related concussion (SRC) is a complex injury with heterogeneous presentation and management. There are few studies that provide guidance on the most effective and feasible strategies for recovery and return to sports participation. Furthermore, there have been no randomized studies of the feasibility, safety, and efficacy of early rehabilitation strategies across multiple sports and age groups. This international cluster-randomized pragmatic trial evaluates the effectiveness of early multi-dimensional rehabilitation integrated with the current return to sport strategy vs. the current return to sport strategy alone. Methods: The study is a cluster-randomized pragmatic trial enrolling male and female athletes from 28 sites. The sites span three countries, and include multiple sports, levels of play (high school, college, and professional), and levels of contact. The two study arms are Enhanced Graded Exertion (EGE) and Multidimensional Rehabilitation (MDR). The EGE arm follows the current return to sport strategy and the MDR arm integrates early, MDR strategies in the context of the current return to sport strategy. Each arm employs a post-injury protocol that applies to all athletes from that site in the event they sustain a concussion during their study enrollment. Participants are enrolled at pre-season baseline. Assessment timepoints include pre-season baseline, time of injury (concussion), 24–48 h post-injury, asymptomatic, and 1-month post-injury. Symptoms and activity levels are tracked post injury through the return to play process and beyond. Injury and recovery characteristics are obtained for all participants. Primary endpoints include time to medical clearance for full return to sport and time to become asymptomatic. Secondary endpoints include symptom, neurocognitive, mental status, balance, convergence insufficiency, psychological distress, and quality of life trajectories post-injury. Discussion: Outputs from the trial are expected to inform both research and clinical practice in post-concussion rehabilitation across all levels of sport and extend beyond civilian medicine to care for military personnel. Ethics and Dissemination: The study is approved by the data coordinating center Institutional Review Board and registered at clinicaltrials.gov. Dissemination will include peer-reviewed publications, presentation to patients and public groups, as well as dissemination in other healthcare and public venues of interest. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02988596 Trial Funding: National Football League
    • 

    corecore