382 research outputs found

    Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling

    Get PDF
    AIM: The aim of this study was to investigate feedback control strategies for integration of electric motor assist and functional electrical stimulation (FES) for paraplegic cycling, with particular focus on development of a testbed for exercise testing in FES cycling, in which both cycling cadence and workrate are simultaneously well controlled and contemporary physiological measures of exercise performance derived. A second aim was to investigate the possible benefits of the approach for mobile, recreational cycling. METHODS: A recumbent tricycle with an auxiliary electric motor is used, which is adapted for paraplegic users, and instrumented for stimulation control. We propose a novel integrated control strategy which simultaneously provides feedback control of leg power output (via automatic adjustment of stimulation intensity) and cycling cadence (via electric motor control). Both loops are designed using system identification and analytical (model-based) feedback design methods. Ventilatory and pulmonary gas exchange response profiles are derived using a portable system for real-time breath-by-breath acquisition. RESULTS:We provide indicative results from one paraplegic subject in which a series of feedback-control tests illustrate accurate control of cycling cadence, leg power control, and external disturbance rejection. We also provide physiological response profiles from a submaximal exercise step test and a maximal incremental exercise test, as facilitated by the control strategy. CONCLUSION: The integrated control strategy is effective in facilitating exercise testing under conditions of well-controlled cadence and power output. Our control approach significantly extends the achievable workrate range and enhances exercise-test sensitivity for FES cycling, thus allowing a more stringent characterization of physiological response profiles and estimation of key parameters of aerobic function.We further conclude that the control approach can significantly improve the overall performance of mobile recreational cycling

    Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost

    Get PDF
    <b>Aim</b><p></p> The energy efficiency of FES-cycling in spinal cord injured subjects is very much lower than that of normal cycling, and efficiency is dependent upon the parameters of muscle stimulation. We investigated measures which can be used to evaluate the effect on cycling performance of changes in stimulation parameters, and which might therefore be used to optimise them. We aimed to determine whether oxygen cost and stimulation cost measurements are sensitive enough to allow discrimination between the efficacy of different activation ranges for stimulation of each muscle group during constant-power cycling. <p></p> <b>Methods</b><p></p> We employed a custom FES-cycling ergometer system, with accurate control of cadence and stimulated exercise workrate. Two sets of muscle activation angles (“stimulation patterns”), denoted “P1” and “P2”, were applied repeatedly (eight times each) during constant-power cycling, in a repeated measures design with a single paraplegic subject. Pulmonary oxygen uptake was measured in real time and used to determine the oxygen cost of the exercise. A new measure of stimulation cost of the exercise is proposed, which represents the total rate of stimulation charge applied to the stimulated muscle groups during cycling. A number of energy-efficiency measures were also estimated. <p></p> <b>Results</b><p></p> Average oxygen cost and stimulation cost of P1 were found to be significantly lower than those for P2 (paired <i>t</i>-test, <i>p</i> < 0.05): oxygen costs were 0.56 ± 0.03 l min<sup>−1</sup> and 0.61 ± 0.04 l min<sup>−1</sup>(mean ± S.D.), respectively; stimulation costs were 74.91 ± 12.15 mC min<sup>−1</sup> and 100.30 ± 14.78 mC min<sup>−1</sup> (mean ± S.D.), respectively. Correspondingly, all efficiency estimates for P1 were greater than those for P2. <p></p> <b>Conclusion</b><p></p> Oxygen cost and stimulation cost measures both allow discrimination between the efficacy of different muscle activation patterns during constant-power FES-cycling. However, stimulation cost is more easily determined in real time, and responds more rapidly and with greatly improved signal-to-noise properties than the ventilatory oxygen uptake measurements required for estimation of oxygen cost. These measures may find utility in the adjustment of stimulation patterns for achievement of optimal cycling performance. <p></p&gt

    Intensity Gradients of Anomalous Cosmic Ray Oxygen Throughout the Heliosphere

    Get PDF
    We use anomalous cosmic ray oxygen energy spectra collected from five different locations in the heliosphere during three time periods to estimate the radial and latitudinal gradients of the particle intensities at three energies. The three periods include the two high-latitude passes of Ulysses over the solar poles and the last few months of the cosmic ray oxygen data from Pioneer 10. The radial gradient is modeled as a power law in radius and the latitudinal gradient is assumed to be constant. The gradients are analyzed in two ways: the first uses the actual average spacecraft latitudes and the second assumes the symmetry plane of the heliosphere is at 10° S in heliolatitude. Reasonable fits are obtained under either assumption concerning the location of the symmetry plane, although the latitudinal gradients are smaller by a factor of~ 2 if the symmetry plane is offset by l0° S. The radial gradient exhibits a radial dependence of ~r^(-1) or r^(-2) depending on whether the symmetry plane is the helioequator or not, respectively. The r^(-2) dependence is not consistent with the gradient measured in a similar part of the solar cycle ~20 years ago, suggesting that the helioequator is the likely plane of symmetry for these particles. The only significant difference in oxygen flux between polar passes occurs at < 10 Me V /nuc and is similar to that observed one year earlier in the outer heliosphere due to decreasing solar modulation

    Roughening Transition in a Moving Contact Line

    Full text link
    The dynamics of the deformations of a moving contact line on a disordered substrate is formulated, taking into account both local and hydrodynamic dissipation mechanisms. It is shown that both the coating transition in contact lines receding at relatively high velocities, and the pinning transition for slowly moving contact lines, can be understood in a unified framework as roughening transitions in the contact line. We propose a phase diagram for the system in which the phase boundaries corresponding to the coating transition and the pinning transition meet at a junction point, and suggest that for sufficiently strong disorder a receding contact line will leave a Landau--Levich film immediately after depinning. This effect may be relevant to a recent experimental observation in a liquid Helium contact line on a Cesium substrate [C. Guthmann, R. Gombrowicz, V. Repain, and E. Rolley, Phys. Rev. Lett. {\bf 80}, 2865 (1998)].Comment: 16 pages, 6 encapsulated figure

    External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures

    Full text link
    In this paper, we demonstrate external control over the magnetization direction in ferromagnetic (FM) In_{1-x}Mn_{x}As/GaSb heterostructures. FM ordering with T_C as high as 50 K is confirmed by SQUID magnetization, anomalous Hall effect (AHE), and magneto-optical Kerr effect (MOKE) measurements. Even though tensile strain is known to favor an easy axis normal to the layer plane, at low temperatures we observe that the magnetization direction in several samples is intermediate between the normal and in-plane axes. As the temperature increases, however, the easy axis rotates to the direction normal to the plane. We further demonstrate that the easy magnetization axis can be controlled by incident light through a bolometric effect, which induces a pronounced increase in the amplitude of the AHE. A mean-field-theory model for the carrier-mediated ferromagnetism reproduces the tendency for dramatic reorientations of the magnetization axis, but not the specific sensitivity to small temperature variations.Comment: 11 pages, 3 figures, submitted to NGS-1

    Improving estimation of the prognosis of childhood psychopathology; combination of DSM-III-R/DISC diagnoses and CBCL scores [IF: 2.7]

    Get PDF
    Objective: To compare the predictive validity of the clinical-diagnostic and the empirical-quantitative approach to assessment of childhood psychopathology, and to investigate the usefulness of combining both approaches. Method: A referred sample (N=96), aged 6 to 12 years at initial assessment, was followed up across - on average - a period of 3.2 years. It was assessed to what extent DISC/DSM-III-R diagnoses - representing the clinical-diagnostic approach, and CBCL scores - representing the empirical-quantitative approach, predicted the following signs of poor outcome: outpatient/inpatient treatment, or parents' wish for professional help for the child at follow-up, disciplinary problems in school, and police/judicial contacts. Results: Both diagnostic systems added significantly to the prediction of poor outcome, and neither of the two systems was superior. Use of both systems simultaneously provided the most accurate estimation of the prognosis, reflected by the occurrence of future poor outcome. Even diagnostic concepts that are generally regarded as relatively similar, such as ADHD (DSM) and attention problems (CBCL), or conduct disorder (DSM) and delinquent behavior (CBCL), appeared to differ in their ability to predict poor outcome. Conclusions: The present study supports the use of the empirical-quantitative approach and the clinical-diagnostic approach simultaneously, both in research and in clinical settings, to obtain a comprehensive view of the prognosis of psychopathology in children. © Association for Child Psychology and Psychiatry, 2004

    Technical summary

    Get PDF
    Human interference with the climate system is occurring. Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change and how risks can be reduced through mitigation and adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of mitigation and adaptation
    • 

    corecore