291 research outputs found

    Hybrid meson decay from the lattice

    Get PDF
    We discuss the allowed decays of a hybrid meson in the heavy quark limit. We deduce that an important decay will be into a heavy quark non-hybrid state and a light quark meson, in other words, the de-excitation of an excited gluonic string by emission of a light quark-antiquark pair. We discuss the study of hadronic decays from the lattice in the heavy quark limit and apply this approach to explore the transitions from a spin-exotic hybrid to χbη\chi_b \eta and χbS\chi_b S where SS is a scalar meson. We obtain a signal for the transition emitting a scalar meson and we discuss the phenomenological implications.Comment: 18 pages, LATEX, 3 ps figure

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    The potential of the Child Health Utility 9D Index as an outcome measure for child dental health

    Get PDF
    Background The Child Health Utility 9D (CHU9D) is a relatively new generic child health-related quality of life measure (HRQoL)—designed to be completed by children—which enables the calculation of utility values. The aim is to investigate the use of the CHU9D Index as an outcome measure for child dental health in New Zealand. Method A survey was conducted of children aged between 6 and 9 years attending for routine dental examinations in community clinics in Dunedin (New Zealand) in 2012. The CHU9D, a HRQoL, was used, along with the Child Perceptions Questionnaire (CPQ), a validated oral health-related quality of life (OHRQoL) measure. Socio-demographic characteristics (sex, age, ethnicity and household deprivation) were recorded. Dental therapists undertook routine clinical examinations, with charting recorded for each child for decayed, missing and filled deciduous teeth (dmft) at the d3 level. Results One hundred and forty 6-to-9-year-olds (50.7% female) took part in the study (93.3% participation rate). The mean d3mft was 2.4 (SD = 2.6; range 0 to 9). Both CHU9D and CPQ detected differences in the impact of dental caries, with scores in the expected direction: children who presented with caries had higher scores (indicating poorer OHRQoL) than those who were free of apparent caries. Children with no apparent caries had a higher mean CHU9D score than those with caries (indicating better HRQoL). The difference for the CPQ was statistically significant, but for CHU9D the difference was not significant. When the two indices were compared, there was a significant difference in mean CHU9D scores by the prevalence of CPQ and subscale impacts with children experiencing no impacts having mean CHU9D scores closer to 1.0 (representing perfect health). Conclusion The CHU9D may be useful in dental research. Further exploration in samples with different caries experience is required. The use of the CHU9D in child oral health studies will enable the calculation of quality-adjusted life years (QALYs) for use in economic evaluation

    Weighted cue integration in the rodent head direction system

    Get PDF
    How the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration models predict averaging of the two cues, whereas attractor models predict capture of the signal by the dominant cue. We found that a visual landmark mostly captured the HD signal at low conflicts: however, there was an increasing propensity for the cells to integrate the cues thereafter. A large conflict presented to naive rats resulted in greater visual cue capture (less integration) than in experienced rats, revealing an effect of experience. We propose that weighted cue integration in HD cells arises from dynamic plasticity of the feed-forward inputs to the network, causing within-trial spatial redistribution of the visual inputs onto the ring. This suggests that an attractor network can implement decision processes about cue reliability using simple architecture and learning rules, thus providing a potential neural substrate for weighted cue integration

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    A quantitative driver model of pre-crash brake onset and control

    Get PDF
    An existing modelling framework is leveraged to create a driver braking model for use in simulations of critical longitudinal scenarios with a slower or braking lead vehicle. The model applies intermittent brake adjustments to minimize accumulated looming prediction error. It is here applied to the simulation of a set of lead vehicle scenarios. The imulation results in terms of brake initiation timing and brake jerk are demonstrated to capture well the specific types of kinematics-ependencies that have been recently reported from naturalistic near-crashes and crashes

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Charge exchange ρ0π+\rho^0 \pi^+ photoproduction and implications for searches of exotic meson

    Full text link
    We analyze the process γ+pρ0π+n\vec \gamma +p\to \rho^0 \pi^{+}n at low momentum transfer focusing on a possibility of production of an exotic JPC=1+J^{PC}=1^{-+} meson state. In particular we discuss polarization observables and conclude that linear photon polarization is instrumental for separating of the exotic wave.Comment: 23 pages, 6 figure

    Quark Stars: Features and Findings

    Get PDF
    Under extreme conditions of temperature and/or density, quarks and gluons are expected to undergo a deconfinement phase transition. While this is an ephemeral phenomenon at the ultra-relativistic heavy-ion collider (BNL-RHIC), quark matter may exist naturally in the dense interior of neutron stars. Herein, we present an appraisal of the possible phase structure of dense quark matter inside neutron stars, and the likelihood of its existence given the current status of neutron star observations. We conclude that quark matter inside neutron stars cannot be dismissed as a possibility, although recent observational evidence rules out most soft equations of state.Comment: Contribution to proceedings of Hot Quarks 2006, Villasimius, Italy; 5 pages (TeX), 2 .eps figure
    corecore