298 research outputs found

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlog⁥n)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2−ή)O(n^{3/2-\delta}) is granted, for every ÎŽ>0\delta > 0. Specifically, for every 0≀ϔ≀10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nÏ”)O(n^{\epsilon})-approximation, space Ω(n3/2−4Ï”)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n2−2Ï”)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Semi-Streaming Set Cover

    Full text link
    This paper studies the set cover problem under the semi-streaming model. The underlying set system is formalized in terms of a hypergraph G=(V,E)G = (V, E) whose edges arrive one-by-one and the goal is to construct an edge cover F⊆EF \subseteq E with the objective of minimizing the cardinality (or cost in the weighted case) of FF. We consider a parameterized relaxation of this problem, where given some 0≀ϔ<10 \leq \epsilon < 1, the goal is to construct an edge (1−ϔ)(1 - \epsilon)-cover, namely, a subset of edges incident to all but an Ï”\epsilon-fraction of the vertices (or their benefit in the weighted case). The key limitation imposed on the algorithm is that its space is limited to (poly)logarithmically many bits per vertex. Our main result is an asymptotically tight trade-off between Ï”\epsilon and the approximation ratio: We design a semi-streaming algorithm that on input graph GG, constructs a succinct data structure D\mathcal{D} such that for every 0≀ϔ<10 \leq \epsilon < 1, an edge (1−ϔ)(1 - \epsilon)-cover that approximates the optimal edge \mbox{(11-)cover} within a factor of f(Ï”,n)f(\epsilon, n) can be extracted from D\mathcal{D} (efficiently and with no additional space requirements), where f(Ï”,n)={O(1/Ï”),if ϔ>1/nO(n),otherwise . f(\epsilon, n) = \left\{ \begin{array}{ll} O (1 / \epsilon), & \text{if } \epsilon > 1 / \sqrt{n} \\ O (\sqrt{n}), & \text{otherwise} \end{array} \right. \, . In particular for the traditional set cover problem we obtain an O(n)O(\sqrt{n})-approximation. This algorithm is proved to be best possible by establishing a family (parameterized by Ï”\epsilon) of matching lower bounds.Comment: Full version of the extended abstract that will appear in Proceedings of ICALP 2014 track

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlog⁥n)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+Ï”)(3+\epsilon) in O(ϔ−3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
    • 

    corecore