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Maximum Matching in Turnstile Streams

Christian Konrad

Reykjavik University, Reykjavik, Iceland, christiank@ru.is

Abstract. We consider the unweighted bipartite maximum matching problem in the one-pass
turnstile streaming model where the input stream consists of edge insertions and deletions. In the
insertion-only model, a one-pass 2-approximation streaming algorithm can be easily obtained with
space O(n logn), where n denotes the number of vertices of the input graph. We show that no such
result is possible if edge deletions are allowed, even if space O(n3/2−δ) is granted, for every δ > 0.
Specifically, for every 0 ≤ ε ≤ 1, we show that in the one-pass turnstile streaming model, in order
to compute a O(nε)-approximation, space Ω(n3/2−4ε) is required for constant error randomized
algorithms, and, up to logarithmic factors, space Õ(n2−2ε) is sufficient.

Our lower bound result is proved in the simultaneous message model of communication and may
be of independent interest.

1 Introduction

Massive graphs are usually dynamic objects that evolve over time in structure and size. For
example, the Internet graph changes as webpages are created or deleted, the structure of social
network graphs changes as friendships are established or ended, and graph databases change
in size when data items are inserted or deleted. Dynamic graph algorithms can cope with
evolving graphs of moderate sizes. They receive a sequence of updates, such as edge insertions
or deletions, and maintain valid solutions at any moment. However, when considering massive
graphs, these algorithms are often less suited as they assume random access to the input graph,
an assumption that can hardly be guaranteed in this context. Consequently, research has been
carried out on dynamic graph streaming algorithms that can handle both edge insertions and
deletions.

Dynamic Graph Streams. A data streaming algorithm processes an input stream X =
X1, . . . , Xn sequentially item by item from left to right in passes while using a memory whose
size is sublinear in the size of the input [25]. Graph streams have been studied for almost two
decades. However, until recently, all graph streams considered in the literature were insertion-
only, i.e., they process streams consisting of sequences of edge insertions. In 2012, Ahn, Guha and
McGregor [2] initiated the study of dynamic graph streaming algorithms that process streams
consisting of both edge insertions and deletions. Since then, it has been shown that a vari-
ety of problems for which space-efficient streaming algorithms in the insertion-only model are
known, such as testing connectivity and bipartiteness, computing spanning trees, computing
cut-preserving sparsifiers and spectral sparsifiers, can similarly be solved well in small space
in the dynamic model [2,3,20,19]. An exception is the maximum matching problem which, as
we will detail later, is probably the most studied graph problem in streaming settings. In the
insertion-only model, a 2-approximation algorithm for this problem can easily be obtained in
one pass with O(n log n) space, where n is the number of vertices in the input graph. Even in
the sliding-window model1, which can be seen as a model located between the insertion-only
model and the dynamic model, the problem can be solved well [8]. The status of the problem

1 In the sliding-window model, an algorithm receives a potentially infinite insertion-only stream, however, only
a fixed number of most recent edges are considered by the algorithm. Edges are seen as deleted when they are
no longer contained in the most recent window of time.
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in the dynamic model has been open so far, and, in fact, the existence of sublinear space one-
pass dynamic streaming algorithms for the maximum matching problem was one of the open
problems collected at the Bertinoro 2014 workshop on sublinear algorithms 2.

Results on dynamic matching algorithms [6,5] show that even when the sequence of graph
updates contains deletions, then large matchings can be maintained without too many recon-
figurations. These results may give reasons for hope that constant or poly-logarithmic approxi-
mations could be achieved in the one-pass dynamic streaming model. We, however, show that
if there is such an algorithm, then it uses a huge amount of space.

Summary of Our Results. In this paper, we present a one-pass dynamic streaming al-
gorithm for maximum bipartite matching and a space lower bound for streaming algorithms in
the turnstile model, a slightly more general model than the dynamic model (see Section 2 for
a discussion), the latter constituting the main contribution of this paper. We show that in one
pass, an O(nε)-approximation can be computed in space Õ(n2−2ε) (Theorem 4), and space
Ω(n3/2−4ε) is necessary for such an approximation (Corollary 1).

Lower Bound via Communication Complexity. Many space lower bounds in the
insertion-only model are proved in the one-way communication model. In the one-way model,
party one sends a message to party two who, upon reception, sends a message to party three.
This process continues until the last party receives a message and outputs the result. A recent
result by Li, Nguyên and Woodruff [22] shows that space lower bounds for turnstile streaming
algorithms can be proved in the more restrictive simultaneous model of communication (SIM
model). In this model, the participating parties simultaneously each send a single message to a
third party, denoted the referee, who computes the output of the protocol as a function of the
received messages. A lower bound on the size of the largest message of the protocol is then a
lower bound on the space requirements of a turnstile one-pass streaming algorithm. Our paper
is the first that uses this connection in the context of graph problems.

A starting point for our lower bound result is a work of Goel, Kapralov and Khanna [13],
and a follow-up work by Kapralov [17]. In [13], via a one-way two-party communication lower
bound, it is shown that in the insertion-only model, every algorithm that computes a (3/2 −
ε)-approximation, for ε > 0, requires Ω(n

1+ 1
log logn ) space. This lower bound has then been

strengthened in [17] to hold for (e/(e − 1) − ε)-approximation algorithms. Both lower bound
constructions heavily rely on Ruzsa-Szemerédi graphs. A graph G is an (r, s)-Ruzsa-Szemerédi
graph (in short: RS-graph), if its edge set can be partitioned into r disjoint induced matchings
each of size at least s. The main argument of [13] can be summarized as follows: Suppose that
the first party holds a relatively dense Ruzsa-Szemerédi graph G1. The second party holds a
graph G2 whose edges render one particular induced matching M ⊆ E(G1) of the first party
indispensable for every large matching in the graph G1 ∪G2, while all other induced matchings
are rendered redundant. Note that as M is an induced matching, there are no alternative edges
in G1 different from M that interconnect the vertices that are matched by M . As the first party
is not aware which of its induced matchings is required, and as the communication budget is
restricted, only few edges of M on average will be sent to the second party. Hence, the expected
size of the output matching is bounded.

When implementing the previous idea in the SIM setting, the following issues have to be
addressed:

Firstly, the number of parties in the simultaneous message protocol needs to be at least
as large as the desired bound on the approximation factor. The trivial protocol where every
party sends a maximum matching of its subgraph, and the referee outputs the largest received
matching, shows that the approximation factor cannot be larger than the number of parties, even

2 See also http://sublinear.info/64
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when message sizes are as small as Õ(n). Hence, proving hardness for polynomial approximation
factors requires a polynomial number of participating parties. On the other hand, the number
of parties can neither be chosen too large: If the input graph is equally split among p parties,
for a large p, then the subgraphs of the parties are of size O(n2/p). Thus, with messages of size
Õ(n2/p), all subgraphs can be sent to the referee who then computes and outputs an optimal
solution. Hence, the larger the number of parties, the weaker a bound on the message sizes can
be achieved.

Secondly, there is no “second party” as in the one-way setting whose edges could render one
particular matching of every other party indispensable. Instead, a construction is required so
that every party both has the function of party one (one of its induced matchings is indispensable
for every large matching) and of party two (some of its edges render many of the induced
matchings of other parties redundant). This suggests that the RS-graphs of the parties have
to overlap in many vertices. While arbitrary RS-graphs with good properties can be employed
for the lower bounds of [13] and [17], we need RS-graphs with simple structure in order to
coordinate the overlaps between the parties.

We show that both concerns can be handled. In Section 3, we present a carefully designed
input distribution where each party holds a highly symmetrical RS-graph. The RS-graph of
a party overlaps almost everywhere with the RS-graphs of other parties, except in one small
induced matching. This matching, however, cannot be distinguished by the party, and hence,
as in the one-way setting, the referee will not receive many edges of this matching.

Upper Bound. Our upper bound result is achieved by an implementation of a simple
matching algorithm in the dynamic streaming model: For an integer k, pick a random subset
A′ ⊆ A of size k of one bipartition of the bipartite input graph G = (A,B,E); for each a ∈ A′,
store arbitrary min{k, deg(a)} incident edges, where deg(a) denotes the degree of a in the input
graph; output a maximum matching in the graph induced by the stored edges. We prove that
this algorithm has an approximation factor of n/k. In order to collect k incident edges of a
given vertex in the dynamic streaming model, we employ the l0-samplers of Jowhari, Sağlam,
Tardos [16], which have previously been used for dynamic graph streaming algorithms [2]. By
chosing k = Θ(n1−ε), this construction leads to a O(nε)-approximation algorithm with space
Õ(n2−2ε). While this algorithm in itself is rather simple and standard, it shows that non-trivial
approximation ratios for maximum bipartite matching in the dynamic streaming model are
possible with sublinear space. Our upper and lower bounds show that in order to compute a
nε-approximation, space Õ(n2−2ε) is sufficient and space Ω(n3/2−4ε) is required. Improving on
either side is left as an open problem.

Further Related Work. Matching problems are probably the most studied graph problem
in the streaming model [12,23,9,10,1,2,21,26,13,17,14,8,7,19,24,18,11]. Closest to our work are
the already mentioned lower bounds [13] and [17]. Their arguments are combinatorial and so are
the arguments in this paper. Note that lower bounds for matching problems in communication
settings have also been obtained via information complexity in [14,15].

In the dynamic streaming model, Ahn, Guha, and McGregor [2] provide a multi-pass algo-
rithm with O(n1+1/p poly ε−1) space, O(p · ε−2 · log ε−1) passes, and approximation factor 1 + ε
for the weighted maximum matching problem, for a parameter p. This is the only result on
matchings known in the dynamic streaming setting.

Recent Related Work. Assadi et. al. [4] independently and concurrently to this work
essentially resolve the questions asked in this paper. Using the same techniques (l0-sampling for
the upper bound, simultaneous communication complexity and Rusza-Szemerédi graphs for the
lower bound), they show that there is a O(nε)-approximation dynamic streaming algorithm for
maximum matching which uses O(n2−3ε) space. Furthermore, they prove that this is essentially
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tight for turnstile algorithms: Any such algorithm in the turnstile model requires space at least
n2−3ε−o(1).

Outline. We start our presentation with a section on preliminaries. Then, in Section 3, we
present our hard input distribution which is then used in Section 4 in order to prove our lower
bound in the SIM model. Finally, we conclude with our upper bound in Section 5.

2 Preliminaries

For an integer a ≥ 1, we write [a] for {1, . . . , a}. We use the notation Õ(), which equals the
standard O() notation where all poly-logarithmic factors are ignored.

Simultaneous Communication Complexity. Let G = (A,B,E) denote a simple bipartite
graph, and, for an integer P ≥ 2, let G1, . . . , GP be edge-disjoint subgraphs of G. In the
simultaneous message complexity setting, for p ∈ [P ], party p is given Gp, and sends a single
message µp of limited size to a third party denoted the referee. Upon reception of all messages,
the referee outputs a matching M in G. Note that the participating parties cannot communicate
with each other, but they have access to an infinite number of shared random coin flips which
can be used to synchronize their messages.

We say that an algorithm/protocol is a constant error algorithm/protocol if it errs with
probability at most ε, for 0 ≤ ε < 1/2. We also assume that a algorithm/protocol never outputs
edges that do not exist in the input graph.

Turnstile streams. For a bipartite graph G = (A,B,E), let X = X1, X2, . . . be the input
stream with Xi ∈ E × {+1,−1}, where +1 indicates that an edge is inserted, and −1 indicates
that an edge is deleted. Edges could potentially be inserted multiple times, or be removed before
they have been inserted, as long as once the stream has been fully processed, the multiplicity
of an edge is in {−c,−c + 1, . . . , c − 1, c}, for some integer c. The reduction of [22] and hence
our lower bound holds for algorithms that can handle this type of dynamic streams, also known
as turnstile streams. Such algorithms may for instance abort if negative edge multiplicities are
encountered, or they output a solution among the edges with non-zero multiplicity.

In [22] it is shown that every turnstile algorithm can be seen as an algorithm that solely
computes a linear sketch of the input stream. As linear sketches can be implemented in the
SIM model, lower bounds in the SIM model are lower bounds on the sketching complexity
of problems, which in turn imply lower bounds for turnstile algorithms. We stress that our
lower bound holds for linear sketches. Note that all known dynamic graph algorithms3 solely
compute linear sketches (e.g. [2,3,20,19]). This gives reasons to conjecture that also all dynamic
algorithms can be seen as linear sketches, and, as a consequence, our lower bound not only holds
for turnstile algorithms but for all dynamic algorithms..

3 Hard Input Distribution

In this section, we construct our hard input distribution. First, we describe the construction of
the distribution from a global point of view in Subsection 3.1. Restricted to the input graph Gp
of any party p ∈ [P ], the distribution of Gp can be described by a different construction which
is simpler and more suitable for our purposes. This will be discussed in Subsection 3.2.

3.1. Hard Input Distribution: Global View Denote by P the number of parties of
the simultaneous message protocol. Let k,Q be integers so that P ≤ k ≤ n

P , and Q = o(P ).
The precise values of k and Q will be determined later. First, we define a bipartite graph
G′ = (A,B,E) on O(n) vertices with A = B = [(Q+P )k] from which we obtain our hard input

3 Some of those algorithms couldn’t handle arbitrary turnstile streams as they rely on the fact that all edge
multiplicities are in {0, 1}.
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distribution. For 1 ≤ i ≤ Q + P , let Ai = [1 + (i − 1)k, ik] and let Bi = [1 + (i − 1)k, ik]. The
edge set E is a collection of matchings as follows:

E =
⋃

i,j∈[Q],p∈[P ]

Mp
i,j ∪

⋃
i∈{Q+1,...,Q+P},j∈[Q]

(Mi,j ∪Mj,i) ∪
⋃

i∈{Q+1,...,Q+P}

Mi,i,

where Mi,j is a perfect matching between Ai and Bj , and M1
i,j , . . . ,M

P
i,j are P edge-disjoint

perfect matchings between Ai and Bj . Note that as we required that k ≥ P , the edge-disjoint
matchings M1

i,j , . . . ,M
P
i,j can be constructed4.

From G′, we construct the input graphs of the different parties as follows:

1. For every p ∈ [P ], let G′p = (A,B,E′p) where E′p consists of the matchings Mp
i,j for i, j ∈ [Q],

the matching MQ+p,Q+p and the matchings MQ+p,j and Mj,Q+p for j ∈ [Q].
2. For every p ∈ [P ], for every matching M of G′p, pick a subset of edges of size k/2 from M

uniformly at random and replace M by this subset.
3. Pick random permutations πA, πB : [Q+P ]→ [Q+P ]. Permute the vertex IDs of the graphs
G′p, for 1 ≤ p ≤ P , so that if πA(i) = j then Ai receives the IDs of Aj as follows: The vertices
a1 = 1 + k(i − 1), a2 = 2 + k(i − 1), . . . , ak = ki receive new IDs so that after the change
of IDs, we have a1 = 1 + k(j − 1), a2 = 2 + k(j − 1), . . . , ak = kj. The same procedure is
carried out with vertices Bi and permutation πB. Denote by Gp the graph G′p once half of
the edges have been removed and the vertex IDs have been permuted. Let G be the union
of the graphs Gp.

The structure of G′ and a subgraph G′p is illustrated in Figure 1.

A1 AQ AQ+1 AQ+P A1 AQ AQ+p

B1 BQ BQ+1 BQ+P B1 BQ BQ+p

G′ G′p ⊆ Gp

Fig. 1. Left: Graph G′. A vertex corresponds to a group of k vertices. Each edge indicates a perfect matching
between the respective vertex groups. The bold edges correspond to the matchings MQ+p,Q+p, for 1 ≤ p ≤ P ,
the solid edges correspond to matchings Mp

i,j , for 1 ≤ i, j ≤ Q, 1 ≤ p ≤ P , and the dotted edges correspond to
matchings MQ+p,i,Mi,Q+p, for 1 ≤ i ≤ Q and 1 ≤ p ≤ P . Right: Subgraph G′p ⊆ G.

Properties of the input graphs. Graph G′ has a perfect matching of size (Q + P )k which
consists of a perfect matching between vertices A1, . . . , AQ and B1, . . . , BQ, and the matchings
MQ+p,Q+p for 1 ≤ p ≤ P . As by Step 2 of the construction of the hard instances, we remove half

of the edges of every matching, a maximum matching in graph G is of size at least (Q+P )k
2 . Note

that while there are many possibilities to match the vertex groups A1, . . . , AQ and B1, . . . , BQ,
in every large matching, many vertices of AQ+i are matched to vertices BQ+i using edges from
the matching MQ+i,Q+i. For some p ∈ [P ], consider now the graph G′p from which the graph Gp
is constructed. G′p consists of perfect matchings between the vertex groups Ai and Bj for every
i, j ∈ [Q] ∪ {p}. In graph Gp, besides the fact that only half of the edges of every matching are
kept, the vertex IDs are permuted. We will argue that due to the permuted vertices, given Gp,
it is difficult to determine which of the matchings corresponds to the matching MQ+p,Q+p in
G′. Therefore, if the referee is able to output edges from the matching MQ+p,Q+p, then many
edges from every matching have to be included into the message µp sent by party p.

3.2. Hard Input Distribution: Local View. From the perspective of an individual party,
by symmetry of the previous construction, the distribution from which the graph Gp is chosen
can also be described as follows:
4 For instance, define G′ so that G′|Ai∪Bi is a P -regular bipartite graph. It is well-known (and easy to see via

Hall’s theorem) that any P -regular bipartite graph is the union of P edge-disjoint perfect matchings.
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1. Pick IA, IB ⊆ [Q+ P ] so that |IA| = |IB| = Q+ 1 uniformly at random.
2. For every i ∈ IA and j ∈ IB, introduce a matching of size k/2 between Ai and Bj chosen

uniformly at random from all possible matching between Ai and Bj of size k/2.

Gp can be seen as a ((Q+ 1)2, k/2)-Ruzsa-Szemerédi graph or as a (Q+ 1, k(Q+ 1)/2)-Ruzsa-
Szemerédi graph. Let Gp denote the possible input graphs of party p. We prove now a lower
bound on |Gp|.

Lemma 1. There are at least |Gp| >
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
2k

k+1

)(Q+1)2

possible input graphs for every

party p. Moreover, the input distribution is uniform.

Proof. The vertex groups IA and IB are each of cardinality Q+1 and chosen from the set [Q+P ].

There are
(
Q+P
Q+1

)
choices for IA. Consider one particular choice of IA. Then, there are (Q+P )!

(P−1)!
possibilities to pair those with Q+ 1 vertex groups of the B nodes. Each matching is a subset

of k/2 edges from k potential edges. Hence, there are
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
k
1
2
k

)(Q+1)2

input graphs for

each party. Using a bound on the central binomial coefficient, this term can be bounded from

below by
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
2k

k+1

)(Q+1)2

. ut

The matching in Gp that corresponds to the matching between AQ+p and BQ+p in G′p will play
an important role in our argument. In the previous construction, every introduced matching in
Gp plays the role of matching MQ+p,Q+p in G′p with equal probability. In the following, we will
denote by Mp the matching in Gp that corresponds to the matching MQ+p,Q+p in G′p.

4 Simultaneous Message Complexity Lower Bound

We prove now that no communication protocol with limited maximal message size performs well
on the input distribution described in Section 3. First, we focus on deterministic protocols, and
we prove a lower bound on the expected approximation ratio (over all possible input graphs)
of any deterministic protocol (Theorem 1). Then, via an application of Yao’s lemma, we obtain
our result for randomized constant error protocols (Theorem 2). Our lower bound for dynamic
one-pass streaming algorithms, Corollary 1, is then obtained as a corollary of Theorem 2 and
the reduction of [22].

Lower Bound For Deterministic Protocols. Consider a deterministic protocol that runs on a
hard instance graph G and uses messages of length at most s. As the protocol is deterministic,
for every party p ∈ [P ], there exists a function mp that maps the input graph Gp of party p to
a message µp. As the maximum message length is limited by s, there are 2s different possible
messages. Our parameters Q, k will be chosen so that s is much smaller than the number of input
graphs Gp for party p, as stated in Lemma 1. Consequently, many input graphs are mapped to
the same message.

Consider now a message µp and denote by µ−1p the set of graphs Gp that are mapped by mp

to message µp. Upon reception of µp, the referee can only output edges that are contained in
every graph of µ−1p , since all outputted edges have to be contained in the input graph.

Let N denote the matching outputted by the referee, and let Np = N ∩ Mp denote the
outputted edges from matching Mp. Furthermore, for a given message µp, denote by Gµp :=
Mp ∩

⋂
Gp∈µ−1

p
Gp.

In the following, we will bound the quantity E|Np| from above (Lemma 2). By linearity
of expectation, this allows us to argue about the expected number of edges of the matchings
∪pNp outputted by the referee. We can hence argue about the expected size of the outputted
matching, which in turn implies a lower bound on the approximation guarantee of the protocol
(Theorem 1).

6



Lemma 2. For every party p ∈ [P ], we have E|Np| = O
(√

sk
Q

)
.

Proof. Let Γ denote the set of potential messages from party p to the referee. As the maximum

message length is bounded by s, we have |Γ | ≤ 2s. Let V =
|Gp|
k2s be a parameter which splits the

set Γ into two parts as follows. Denote by Γ≥ ⊆ Γ the set of messages µp so that |µ−1p | ≥ V ,
and let Γ< = Γ \Γ≥. In the following, for a message µp ∈ Γ , we denote by P [µp] the probability
that message µp is sent by party p. Note that

∑
µp∈Γ< P [µp] <

2sV
|Gp| , since there are at most 2sV

input graphs that are mapped to messages in Γ<. We hence obtain:

E|Np| ≤
∑
µp∈Γ

P [µp]E|Gµp | =
∑
µp∈Γ≥

(
P [µp]E|Gµp |

)
+
∑
µp∈Γ<

(
P [µp]E|Gµp |

)
≤
∑
µp∈Γ≥

(
|µ−1p |

2s
E|Gµp |

)
+
∑
µp∈Γ<

(P [µp]) k

< max{E|Gµp | : µp ∈ Γ≥}+
2sV

|Gp|
k = max{E|Gµp | : µp ∈ Γ≥}+ 1,

where we used the definition of V for the last equality. In Lemma 3, we prove that ∀µp ∈ Γ≥ :

E|Gµp | = O
(√

sk
Q

)
. This then implies the result. ut

Lemma 3. Suppose µp is so that |µ−1p | ≥ V =
|Gp|
k2s . Then, E|Gµp | = O

(√
sk
Q

)
.

Proof. Remember that every graph Gp ∈ µ−1p consists of (Q+ 1)2 edge-disjoint matchings, and
Mp is a randomly chosen one of those. We define

Il = {(i, j) ∈ [Q+ P ]× [Q+ P ] : Gµp |Ai∪Bj contains a matching of size l}.

We prove first that if |Il| is large, then µ−1p is small.

Claim. Let l = o(k). Then, |Il| ≥ x⇒ |µ−1p | <
(
Q+P
Q+1

) (Q+P )!
(P−1)! (

3
4)lx

(
2k√
k

)(Q+1)2

.

Proof. Every graph of µ−1p contains l edges of x (fixed) matchings. The remaining edges and
remaining matchings can be arbitrarily chosen. Then, by a similar argument as in the proof of
Lemma 1, we obtain

|µ−1p | ≤
(
Q+ P − x
Q+ 1− x

)
(Q+ P − x)!

(P − 1)!

(
k − l
1
2k − l

)x( k
1
2k

)(Q+1)2−x

<

(
Q+ P

Q+ 1

)
(Q+ P )!

(P − 1)!
(
3

4
)lx
(

2k√
k

)(Q+1)2

,

where we used
( k−l

1
2
k−l
)

=
(k−l

1
2
k

)
, and the bound

(k−l
1
2
k

)
< (34)l

(
k
1
2
k

)
(remember: l = o(k)) which

follows from Lemma 7 (see Appendix). ut

Then, we can bound:

E|Gµp | ≤
|Il|(
Q+1
2

) · k + (1− |Il|(
Q+1
2

))l <
|Il|(
Q+1
2

) · k + l. (1)

Note that by assumption, we have µ−1p ≥ V . Let l, x be two integers so that:(
Q+ P

Q+ 1

)
(Q+ P )!

(P − 1)!
(
3

4
)lx
(

2k√
k

)(Q+1)2

= V. (2)
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Then, by the previous claim, we obtain |Il| < x. Solving Equality 2 for variable x, and further
bounding it yields:

x ≤ 1

l

(
(Q+ 1)2(k − 1

2
log k) + log

((
Q+ P

Q+ 1

)
(Q+ P )!

(P − 1)!

)
− log V

)
. (3)

Remember that V was chosen as V =
|Gp|
k2s , and hence log V ≥ (Q + 1)2(k − log(k + 1)) +

log
((

Q+P
Q+1

) (Q+P )!
(P−1)!

)
− s− log(k). Using this bound in Inequality 3 yields

x ≤ 1

l

(
(Q+ 1)2(log(k + 1)− 1

2
log k) + s− log k

)
≤ 1

l

(
(Q+ 1)2(log(k + 1)) + s

)
.

Now, using |Il| ≤ x and the previous inequality on x, we continue simplifying Inequality 1 as
follows:

E|Gµ| ≤ · · · <
|Il|

(Q+ 1)2
· k + l ≤ (Q+ 1)2(log(k + 1)) + s

l(Q+ 1)2
· k + l

≤ log(k + 1)k

l
+

sk

l(Q+ 1)2
+ l = O(

sk

l(Q+ 1)2
+ l),

since s = ω((Q + 1)2 log(k + 1)). We optimize by choosing l =
√
sk
Q , and we conclude E|Gµ| =

O(
√
sk
Q ). ut

Theorem 1. For any P ≤
√
n, let Pdet be a P -party deterministic simultaneous message

protocol for maximum matching where all messages are of size at most s. Then, Pdet has an

expected approximation factor of Ω

((
Pn
s

) 1
4

)
.

Proof. For every matching M ′ in the input graph G, the size of M ′ can be bounded by |M ′| ≤
2Qk +

∑P
p=1 |M ′ ∩Mp|, since at most 2Qk edges can be matched to the vertices of the vertex

groups
⋃
i∈[Q]Ai ∪ Bi, and the edges of matchings Mp are the only ones not incident to any

vertex in
⋃
i∈[Q]Ai ∪ Bi. Hence, by linearity of expectation, and the application of Lemma 2,

we obtain:

E|N | ≤ 2Qk +
P∑
p=1

E|Np| ≤ 2Qk + P ·O

(√
sk

Q

)
. (4)

A maximum matching in G is of size at least k(Q+P )
2 . We hence obtain the expected approxi-

mation factor:

E
1
2k(Q+ P )

|N |
≥

1
2k(Q+ P )

E|N |
= Ω

 k(Q+ P )(
Qk + P ·

√
sk
Q

)
 = Ω

(
(Q+ P )Q

√
k

Q2
√
k + P

√
s

)

= Ω

(
PQ
√
k

Q2
√
k + P

√
s

)
= Ω

(
min{P

Q
,
Q
√
k√
s
}

)
, (5)

where the first inequality follows from Jensen’s inequality, and the third equality uses Q = o(P ).

The previous expression is maximized for Q =
(
P
√
s√
k

)1/2
, and we obtain an approximation
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factor of Ω

(
P

1
2 k

1
4

s
1
4

)
. In turn, this expression is maximized when k is as large as possible, that

is, k = n/P (remember that the possible range for k is P ≤ k ≤ n/P ). We hence conclude that

the approximation factor is Ω(
(
Pn
s

) 1
4 ). ut

Lower Bound for Randomized Protocols. Last, in Theorem 2 (proof in appendix), we extend
our determinstic lower bound to randomized ones.

Theorem 2. For any P ≤
√
n, let Prand be a P -party randomized simultaneous message

protocol for maximum matching with error at most ε < 1/2, and all messages are of size at

most s. Then, Prand has an approximation factor of Ω

((
Pn
s

) 1
4

)
.

Our lower bound for one-pass turnstile algorithms now follows from the reduction given in
[22] and the application of Theorem 2 for P =

√
n.

Corollary 1. For every 0 ≤ ε ≤ 1, every randomized constant error turnstile one-pass stream-

ing algorithm for maximum bipartite matching with approximation ratio nε uses space Ω
(
n

3
2
−4ε
)

.

5 Upper Bound

Algorithm 1 Bipartite Matching algorithm
Require: G = (A,B,E) {Bipartite input graph}
1: A′ ← subset of A of size k chosen uniformly at random
2: ∀a ∈ A′ : E′[a]← arbitrary subset of incident edges of a of size min{k, degG(a)}
3: return maximum matching in

⋃
a∈A′ E

′[a]

In this section, we first present a simple randomized algorithm for bipartite matching. Then,
we will discuss implementations of this algorithm as a simultaneous message protocol and as a
dynamic one-pass streaming algorithm.

Bipartite Matching Algorithm. Consider Algorithm 1. First, a subset A′ ⊆ A consisting of
k vertices is chosen uniformly at random. Then, for each vertex a ∈ A′, the algorithm picks
arbitrary k incident edges. Finally, a maximum matching among the retained edges is computed
and returned.

Clearly, the algorithm stores at most k2 edges. The proof of the next lemma concerning the
approximation ratio of Algorithm 1 is deferred to the appendix.

Lemma 4. Let G = (A,B,E) be a bipartite graph with |A| + |B| = n. Then, Algorithm 1 has
an expected approximation ratio of n

k .

Notations. In the proof of Lemma 4, we use the following additional notation. Let G = (A,B,E)
be a bipartite graph. For a set of edges E′ ⊆ E, we denote by A(E′) the subset of A vertices a
for which there exists at least one edge in E′ incident to a. The set B(E′) is defined similarly.

Proof. Let M denote the output of the algorithm, let M∗ be a maximum matching in G, and
let E′ =

⋃
a∈A′ E

′[a]. Let A′∗ = A′ ∩ A(M∗). As A′ has been chosen uniformly at random, we

have E|A′∗| = k|A(M∗)|
|A| . We will prove now that the algorithm can match all vertices in A′∗. This

then implies the result, as |M | ≥ |A′∗|, and

E
|M∗|
|M |

≤ E
|M∗|
|A′∗|

=
|M∗||A|
k|A(M∗)|

=
|A|
k
≤ n/k,
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where we used |A(M∗)| = |M∗|.
To this end, we construct a matching M ′ that matches all vertices of A′∗. Let A′∗1 ⊆ A′∗ so

that for every a ∈ A′∗1 , the incident edge of a in M∗ has been retained by the algorithm. Denote
by M1 ⊆M∗ the subset of optimal edges incident to the vertices A′∗1 . Then, let A′∗2 = A′∗ \A′∗1 .

Consider now the graph G̃ on vertices A′∗2 and B \B(M1) and edges

{e ∈ E′ : e = (a, b) with a ∈ A′∗2 and b ∈ B \B(M1)}.

Note that as for every vertex a ∈ A′∗2 , its optimal incident edge has not been retained, k
different edges have been retained (which also implies that the degree of a in G is at least k).
Therefore, the degree of every a ∈ G̃ is at least k− |B(M1)| = k− |M1|. Furthermore, note that
|A′∗2 | = k − |A′∗1 | = k − |M1|. Thus, by Hall’s marriage theorem, there exists a matching M2 in
G̃ matching all vertices A′∗2 , and hence, |M2| = k − |M1|.

We set M ′ = M1∪M2 and all vertices of A′∗ are matched. We obtain |M ′| = |M1|+|M2| = k,
and the result follows. ut

Implementation of Algorithm 1 as a Simultaneous Message Protocol. Algorithm 1 can be im-
plemented in the simultaneous message model as follows. Using shared random coins, the P
parties agree on the subset A′ ⊆ A. Then, for every a ∈ A′, every party chooses arbitrary
min{degGi(a), k} edges incident to a and sends them to the referee. The referee computes a
maximum matching in the graph induced by all received edges. As the referee receives a su-
perset of the edges as described in Algorithm 1, the same approximation factor as in Lemma 4
holds. We hence obtain the following theorem:

Theorem 3. For every P ≥ 1, there is a randomized P -party simultaneous message protocol
for maximum matching with expected approximation factor nα and all messages are of size
Õ(n2−2α).

Implementation of Algorithm 1 as a Dynamic Streaming Algorithm. We employ the technique of
l0 sampling in our algorithm [16]. For a turnstile stream that describes a vector x, a l0-sampler
samples uniformly at random from the non-zero coordinates of x. Similar to Ahn, Guha, and
McGregor [2], we employ the l0-sampler by Jowhari et al. [16]. Their result can be summarized
as follows:

Lemma 5 ([16]). There exists a turnstile streaming algorithm that performs l0-sampling using
space O(log2 n log δ−1) with error probability at most δ.

In order to implement Algorithm 1 in the dynamic streaming setting, for every a ∈ A′, we
use enough l0-samplers on the sub-stream of incident edges of a in order to guarantee that with
large enough probability, at least min{k,degG(a)} different incident edges of a are sampled. It
can be seen that, for a large enough constant c, c · k log n samplers are enough, with probability
1− 1

nΘ(c) . We make use of the following lemma whose proof is deferred to the appendix.

Lemma 6. Let S be a finite set, k an integer, and c a large enough constant. When sampling
c · k log n times from S, then with probability 1 − 1

nΘ(c) , at least min{k, |S|} different elements
of S have been sampled.

This allows us to conclude with the main theorem of this section.

Theorem 4. There exists a one-pass randomized dynamic streaming algorithm for maximum
bipartite matching with expected approximation ratio nα using space Õ(n2−2α).

10



References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with application to the maximum
matching problem. pp. 526–538. ICALP (2011)

2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. pp. 459–467. SODA
(2012)

3. Ahn, K.J., Guha, S., McGregor, A.: Spectral sparsification in dynamic graph streams. In: AP-
PROX/RANDOM. pp. 1–10 (2013)

4. Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Tight bounds for linear sketches of approximate matchings.
Manuscript (May 2015)

5. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in offline time. pp. 384–393.
FOCS (2014)

6. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite perfect matching with augmenta-
tions. pp. 1044–1052. INFOCOM (2009)

7. Crouch, M., Stubbs, D.S.: Improved streaming algorithms for weighted matching, via unweighted matching.
In: APPROX/RANDOM. pp. 96–104 (2014)

8. Crouch, M.S., McGregor, A., Stubbs, D.: Dynamic graphs in the sliding-window model. In: ESA. pp. 337–348
(2013)

9. Eggert, S., Kliemann, L., Munstermann, P., Srivastav, A.: Bipartite matching in the semi-streaming model.
Algorithmica 63(1-2), 490–508 (2012)

10. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in
the semi-streaming model. pp. 347–358. STACS (2010)

11. Esfandiari, H., Hajiaghayi, M.T., Liaghat, V., Monemizadeh, M., Onak, K.: Streaming algorithms for esti-
mating the matching size in planar graphs and beyond. SODA (2015)

12. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming
model. Theor. Comput. Sci. 348(2), 207–216 (2005)

13. Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite
matching. pp. 468–485. SODA (2012)

14. Guruswami, V., Onak, K.: Superlinear lower bounds for multipass graph processing. In: CCC. pp. 287–298
(2013)

15. Huang, Z., Radunovic, B., Vojnovic, M., Zhang, Q.: Communication complexity of approximate matching in
distributed graphs. STACS (2015)
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A Auxiliary Lemma

Lemma 7. For positive integers a, b, c so that c ≤ a− b, the following holds:(
a− b
c

)
≤
(
a

c

)
· (a− c)b

(a− b)b
.

Proof. (
a− b
c

)
=

(a− b)!
(a− b− c)!c!

≤ a!

(a− c)!c!
· (a− c)b

(a− b)b
=

(
a

c

)
· (a− c)b

(a− b)b
.

ut

B Missing Proofs

B.1 Missing Proof of Theorem 2

Theorem 2. For any P ≤
√
n, let Prand be a P -party randomized simultaneous message

protocol for maximum matching with error at most ε, and all messages are of size at most s.

Then, Prand has an approximation factor of Ω

((
Pn
s

) 1
4

)
.

Proof. Let Prand be a P -party randomized simultaneous message protocol for maximum match-
ing with error probability at most ε < 1/2 and approximation factor α. Then, by Yao’s lemma,
there exists a deterministic protocol Pdet with approximation ratio α, distributional error ε,
and messages of length at most s.

Consider the input distribution as described in Section 3, let G denote all possible input
graphs, and for a graph G ∈ G, denote by NG the matching outputted by Pdet. Furthermore,
let Gε ⊆ G denote those inputs on which Pdet errs.

A maximum matching in G is of size at least k(Q+P )
2 . As the approximation factor is α, we

have for every G ∈ G \ Gε: |NG| ≥ k(Q+P )
2α . Hence,

EG∈G |NG| = (1− ε) · EG∈Gε |NG|+ ε · EG∈G\Gε |NG| ≥ (1− ε)k(Q+ P )

2α
.

From Equation 4 from the proof of Theorem 1, we obtain EG∈G |NG| ≤ 2Qk+P ·O
(√

sk
Q

)
, and

hence

(1− ε)k(Q+ P )

2α
≤ 2Qk + P ·O

(√
sk

Q

)
, implying α = Ω

 k(Q+ P )

Qk + P ·
√
sk
Q

 .

Note that this term coincides with the term in Inequality 5 of the proof of Theorem 1. Optimizing

similarly (k = n/P,Q =
(
P
√
s√
k

) 1
2
), we obtain α = Ω

(
Pn
s

) 1
4 . ut

B.2 Missing Proof of Lemma 6

Lemma 6. Let S be a finite set, k an integer, and c a large enough constant. When sampling
c · k log n times from S, then with probability 1− 1

nΘ(c) , at least min{k, |S|} different elements
of S have been sampled.
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Proof. We consider the following cases:

1. Suppose that |S| = k. Then, we have an instance of the coupon collector’s problem. The
expected number of times an item s ∈ S is sampled is 1

k · c · k log n = c log n. Then, by a
Chernoff bound, the probability that s is not sampled is 1

nΘ(c) , and using the union bound,
the probability that there exists at least one element from S that has not been sampled is

1
nΘ(c) .

2. Suppose that |S| < k. This case is clearly easier than the case |S| = k, as fewer elements
have to be sampled (only |S| instead of k) and the sampling probability for an element is
higher. Therefore, the error probability is smaller than in Case 1.

3. Suppose now that |S| > k. This case is also easier than the case |S| = k, since the same
total number of different samples is required, and the domain from which the samples are
chosen from is larger (|S| instead of k). Therefore, the error probability is also smaller than
in Case 1.

ut
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