14 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Age related decrease of NOR activity in bone marrow metaphase chromosomes from healthy individuals.

    Get PDF
    AIMS: To present data obtained from human bone marrow preparations from healthy individual showing that the proportion of metaphases with silver stained nucleolar organiser region (AgNOR) chromosomes is associated with the age of the donor. METHODS: Bone marrow preparations from eight Russian and 10 Argentinian healthy individuals donating bone marrow for heterologous transplantation were studied by silver staining. The Russian bone marrow preparations were used directly, while the bone marrow specimens from Argentinian donors were incubated for 24 hours at 37 degrees C in F-10 medium with 15% fetal bovine serum. The slides were silver stained by the one step method of Howell and Black with slight modifications. Thirty metaphases with clearly defined D and G group chromosomes were scored for the numbers of AgNORs. All metaphases that were adjacent to silver stained interphase nuclei were analysed to assess the percentage of AgNOR positive mitoses. The Kruskal Wallis test and Kendall's rank correlation coefficient (rK) were used to assess the relation between age and the percentage of AgNOR positive cells. RESULTS: The mean numbers (SE) of AgNORs per metaphase were 5.06 (0.17) and 5.56 (0.23) for the Russian and Argentinian groups, respectively, with no significant differences between the two groups. The common percentage of AgNOR positive cells decreased significantly as a function of age, with an rK = -0.57 (p < 0.0012). CONCLUSIONS: The percentages of AgNOR negative metaphases in bone marrow from healthy individuals is strongly associated with age and this may be related to age related telomere loss

    FoxO4 is the main forkhead transcriptional factor localized in the gastrointestinal tracts of pigs

    No full text
    Forkhead box (Fox) proteins play critical roles in the regulation of differentiation, proliferation, immunity and aging of cells. Most studies on Fox proteins are limited to cultured cells and rodent. The aim of the current study is to detect by immunohistrochemistry whether FoxO1, FoxO3a and FoxO4 proteins are localized in the stomach and intestine of the pig. The results showed that FoxO4 exists in the mucosa in all parts of the stomach and intestine; FoxO3a exists mainly in the lamina propria and muscularis of some parts. However, FoxO1 is not detectable in all parts of the stomach and intestine. Collectively, the results of the present study indicate that there exists a distinct expression pattern of Fox proteins, and that FoxO4 is a primary forkhead transcriptional factor localized in the gastrointestinal tracts of the pig
    corecore