376 research outputs found

    Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels

    Get PDF
    Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion

    Navigating cascades of uncertainty — as easy as ABC? Not quite


    Get PDF
    The uncertainties in scientific studies for climate risk management can be investigated at three levels of complexity: “ABC”. The most sophisticated involves “Analyzing” the full range of uncertainty with large multi-model ensemble experiments. The simplest is about “Bounding” the uncertainty by defining only the upper and lower limits of the likely outcomes. The intermediate approach, “Crystallizing” the uncertainty, distills the full range to improve the computational efficiency of the “Analyze” approach. Modelers typically dictate the study design, with decision-makers then facing difficulties when interpreting the results of ensemble experiments. We assert that to make science more relevant to decision-making, we must begin by considering the applications of scientific outputs in facilitating decision-making pathways, particularly when managing extreme events. This requires working with practitioners from outset, thereby adding “D” for “Decision-centric” to the ABC framework

    The landscape of gifted and talented education in England and Wales: How are teachers implementing policy?

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Research Papers in Education, 27(2), 167-186, 2012, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02671522.2010.509514.This paper explores the evidence relating to how primary schools are responding to the ‘gifted and talented’ initiative in England and Wales. A questionnaire survey which invited both closed and open-ended responses was carried out with a national sample of primary schools. The survey indicated an increasing proportion of coordinators, compared with a survey carried out in 1996, were identifying their gifted and talented children as well as having associated school policies. However, the survey also highlighted a number of issues which need addressing if the initiative is to achieve its objective of providing the best possible educational opportunities for children. For example, it was found that a significant number of practitioners were not aware of the existence of the National Quality Standards for gifted and talented education, provided by the UK government in 2007, and the subject-specific criteria provided by the UK’s Curriculum Authority for identification and provision have been largely ignored. The process of identifying children to be placed on the ‘gifted and talented’ register seems haphazard and based on pragmatic reasons. Analysis of teachers’ responses also revealed a range of views and theoretical positioning held by them, which have implications for classroom practice. As the ‘gifted and talented’ initiative in the UK is entering a second decade, and yet more significant changes in policy are introduced, pertinent questions need to be raised and given consideration

    Thin accretion disc with a corona in a central magnetic field

    Full text link
    We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.Comment: Accepted for publication in Astrophysics & Space Scienc

    Structure, mass and stability of galactic disks

    Full text link
    In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures is available at http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd

    Electrical sensing of the dynamical structure of the planetary boundary layer

    Get PDF
    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 hours) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20pCm-3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92pCm-3 up to 500m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field mill, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not

    Neuron-glia cross talk in rat striatum after transient forebrain ischemia

    Get PDF
    Striatum is highly vulnerable to transient forebrain ischemia induced by the 4 vessel occlusion (4V0) method (Brierley 1976. Pulsinelli et al. 1982, Zini et al. 1990a). Massive degeneration and loss of Nissl-stained neurons occur within 24 hr from an ischemia of long duration (30 min) (Pulsinelli et al. 1982). Neuronal loss is mainly restricted to the lateral part of caudate-putamen (Pulsinelli et al. 1982, Zini et al. 1990a). Cellular alterations include loss of medium-size spiny projection neurons (Pulsinelli et al. 1982, Francis and Pulsinelli 1982), largely corresponding to dopaminoceptive neurons (Benfenati et al. 1989, Zoli et al. 1989), and increase in reactive astrocytes (Pulsinelli et al. 1982, Grimaldi et al. 1990) and microglia (Gehrmann et al. 1982). On the other hand, large cholinergie (Francis and Pulsinelli 1982) and medium-size aspiny somatostatin (SS)/neuropeptide Y (NPY)-containing interneurons are resistant to the ischemic insult (Pulsinelli et al. 1982, Grimaldi et al. 1990). In a few instances, such as in the case of SS and NPY immunoreactivity (IR), the initial loss is followed by full recovery within 7 (SS) or 40 (NPY) days post-ischemia (Grimaldi et al. 1990). However, it is not known whether some kind of recovery is present for the bulk of medium-size spiny projections neurons after the first days post-ischemia

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.5−1.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies
    • 

    corecore