131 research outputs found

    What works? The influence of changing wastewater treatment type, including tertiary granular activated charcoal, on downstream macroinvertebrate biodiversity over time

    Get PDF
    This study reviewed the impacts of wastewater on macroinvertebrates over four decades in a UK lowland river. This involved examining changes in chemicals, temperature, flow and macroinvertebrate diversity from the 1970s until 2017 for a wastewater‐dominated river downstream of Swindon in the UK (population about 220,000). When the wastewater treatment process changed from trickling filter to activated sludge in 1991, biological oxygen demand was nearly halved (90%ile 8.1 to 4.6 mg/L), ammonia peaks dropped more than 7‐fold (90%ile 3.9 to 0.53 mg/L) whilst dissolved oxygen climbed consistently above 60% saturation (10%ile went from 49% to 64%) at a sampling point 2 km downstream of the wastewater treatment plant. A sustained increase in the number of macroinvertebrate species was evident from that point. River flow did not change, temperature rose slightly, whilst the major metal concentrations declined steadily over most of the monitoring period. Neither the introduction of phosphate stripping in 1999, nor the use of tertiary granular activated charcoal from 2008 to 2014 had strong positive effects on subsequent macroinvertebrate diversity. That the diversity still had not reached the ideal status by 2016 may be related to the modest habitat quality, agricultural pesticides and the limited recolonization potential in the catchment. The results indicate that urban wastewaters, with their chemical pollutants, are today probably not the biggest threat to the macroinvertebrate diversity of multiple‐stressed lowland rivers in the UK

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella)

    Get PDF
    Analysis of fecal glucocorticoid (GC) metabolites has recently become the standard method to monitor adrenocortical activity in primates noninvasively. However, given variation in the production, metabolism, and excretion of GCs across species and even between sexes, there are no standard methods that are universally applicable. In particular, it is important to validate assays intended to measure GC production, test extraction and storage procedures, and consider the time course of GC metabolite excretion relative to the production and circulation of the native hormones. This study examines these four methodological aspects of fecal GC metabolite analysis in tufted capuchins (Cebus apella). Specifically, we conducted an adrenocorticotrophic hormone (ACTH) challenge on one male and one female capuchin to test the validity of four GC enzyme immunoassays (EIAs) and document the time course characterizing GC me- tabolite excretion in this species. In addition, we compare a common field-friendly technique for extracting fecal GC metabolites to an established laboratory extraction methodology and test for effects of storing “field extracts” for up to 1 yr. Results suggest that a corticosterone EIA is most sensitive to changes in GC production, provides reliable measures when extracted according to the field method, and measures GC metabolites which remain highly stable after even 12 mo of storage. Further, the time course of GC metabolite excretion is shorter than that described yet for any primate taxa. These results provide guidelines for studies of GCs in tufted capuchins, and underscore the importance of validating methods for fecal hormone analysis for each species of interest

    Identification strategy for unknown pollutants using high-resolution mass spectrometry: Androgen-disrupting compounds identified through effect-directed analysis

    Get PDF
    Effect-directed analysis has been applied to a river sediment sample of concern to identify the compounds responsible for the observed effects in an in vitro (anti-)androgenicity assay. For identification after non-target analysis performed on a high-resolution LTQ-Orbitrap, we developed a de novo identification strategy including physico-chemical parameters derived from the effect-directed analysis approach. With this identification strategy, we were able to handle the immense amount of data produced by non-target accurate mass analysis. The effect-directed analysis approach, together with the identification strategy, led to the successful identification of eight androgen-disrupting compounds belonging to very diverse compound classes: an oxygenated polyaromatic hydrocarbon, organophosphates, musks, and steroids. This is one of the first studies in the field of environmental analysis dealing with the difficult task of handling the large amount of data produced from non-target analysis. The combination of bioassay activity assessment, accurate mass measurement, and the identification and confirmation strategy is a promising approach for future identification of environmental key toxicants that are not included as priority pollutants in monitoring programs

    Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa)

    Get PDF
    For decades, linden trees (basswoods or lime trees), and particularly silver linden (Tilia tomentosa), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation

    Is bisexuality invisible? A review of sexualities scholarship 1970–2015

    Get PDF
    This article provides a review of sexualities scholarship within the social sciences between 1970 and 2015. It takes an innovative approach by focusing on the way in which bisexuality is addressed in this body of literature. The article reveals the marginalisation, under-representation and invisibility of bisexuality within and across the social sciences in relation to both bisexual experience and identity. Reasons for this varied across the different eras, including the heterosexist nature of the literature, the impact of gay and lesbian-focused identity politics, and queer deconstructionism. In addition, patterns of bisexual erasure and invisibility were uneven, with some scholarship taking inclusive approaches or criticising prejudice against bisexuality. The initial findings of the review were enriched by critical commentary from key relevant sociologists and political scientists. The article concludes that future sexualities scholarship could be enhanced by greater consideration of bisexuality

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken
    corecore