309 research outputs found

    A Queueing Model for A Multiprocessor System with Partitioned Memory

    Get PDF

    Validation of Multiple Solute Model for Application to Micellar Enhanced Ultrafiltration and Comparison with Modified Resistance in Series Model

    Get PDF
    Modified resistance in series model and multiple solute models have been studied for its application in micellar enhanced ultrafiltration (MEUF). Experimental results for separation of Ni(II) ions from synthetic wastewater with anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Tween 80 are used for validation of mathematical models. Modified resistance in series model is characterized by model parameters such as specific resistance α0, membrane resistance Rm and mass transfer coefficient k. Whereas, multiple solute model is characterized by the parameters such as membrane resistance Rm, permeability coefficient Pm, back transport coefficient Kbi and mass transfer coefficient ki for each solute in the system. These parameters are estimated by using the Levenberg-Marquardt method coupled with the Gauss-Newton algorithm using MATLAB. The simulation results for multiple solute model are in good agreement with the experimental results as compared to the simulation results obtained by using modified resistance in series model

    The cicadas (Hemiptera: Cicadidae) of India, Bangladesh, Bhutan, Myanmar, Nepal and Sri Lanka: an annotated provisional catalogue, regional checklist and bibliography

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article.NHM Repositor

    Robustness against parametric noise of non ideal holonomic gates

    Get PDF
    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the very motivation of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio et al. [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of non ideal holonomic gates at finite operational time, i.e., far before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite time gates. The obtained results suggest that the finite time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of geometrical feature.Comment: 8 pages, 8 figures, several changes made, accepted for publication on Phys. Rev.

    Improving Phase Change Memory Performance with Data Content Aware Access

    Full text link
    A prominent characteristic of write operation in Phase-Change Memory (PCM) is that its latency and energy are sensitive to the data to be written as well as the content that is overwritten. We observe that overwriting unknown memory content can incur significantly higher latency and energy compared to overwriting known all-zeros or all-ones content. This is because all-zeros or all-ones content is overwritten by programming the PCM cells only in one direction, i.e., using either SET or RESET operations, not both. In this paper, we propose data content aware PCM writes (DATACON), a new mechanism that reduces the latency and energy of PCM writes by redirecting these requests to overwrite memory locations containing all-zeros or all-ones. DATACON operates in three steps. First, it estimates how much a PCM write access would benefit from overwriting known content (e.g., all-zeros, or all-ones) by comprehensively considering the number of set bits in the data to be written, and the energy-latency trade-offs for SET and RESET operations in PCM. Second, it translates the write address to a physical address within memory that contains the best type of content to overwrite, and records this translation in a table for future accesses. We exploit data access locality in workloads to minimize the address translation overhead. Third, it re-initializes unused memory locations with known all-zeros or all-ones content in a manner that does not interfere with regular read and write accesses. DATACON overwrites unknown content only when it is absolutely necessary to do so. We evaluate DATACON with workloads from state-of-the-art machine learning applications, SPEC CPU2017, and NAS Parallel Benchmarks. Results demonstrate that DATACON significantly improves system performance and memory system energy consumption compared to the best of performance-oriented state-of-the-art techniques.Comment: 18 pages, 21 figures, accepted at ACM SIGPLAN International Symposium on Memory Management (ISMM

    Residence Time Statistics for Normal and Fractional Diffusion in a Force Field

    Full text link
    We investigate statistics of occupation times for an over-damped Brownian particle in an external force field. A backward Fokker-Planck equation introduced by Majumdar and Comtet describing the distribution of occupation times is solved. The solution gives a general relation between occupation time statistics and probability currents which are found from solutions of the corresponding problem of first passage time. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker-Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding potential rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.Comment: 12 page

    Utilitarian Mechanism Design for Multiobjective Optimization

    Get PDF
    In a classic optimization problem, the complete input data is assumed to be known to the algorithm. This assumption may not be true anymore in optimization problems motivated by the Internet where part of the input data is private knowledge of independent selfish agents. The goal of algorithmic mechanism design is to provide (in polynomial time) a solution to the optimization problem and a set of incentives for the agents such that disclosing the input data is a dominant strategy for the agents. In the case of NP-hard problems, the solution computed should also be a good approximation of the optimum. In this paper we focus on mechanism design for multiobjective optimization problems. In this setting we are given a main objective function and a set of secondary objectives which are modeled via budget constraints. Multiobjective optimization is a natural setting for mechanism design as many economical choices ask for a compromise between different, partially conflicting goals. The main contribution of this paper is showing that two of the main tools for the design of approximation algorithms for multiobjective optimization problems, namely, approximate Pareto sets and Lagrangian relaxation, can lead to truthful approximation schemes. By exploiting the method of approximate Pareto sets, we devise truthful deterministic and randomized multicriteria fully polynomial-time approximation schemes (FPTASs) for multiobjective optimization problems whose exact version admits a pseudopolynomial-time algorithm, as, for instance, the multibudgeted versions of minimum spanning tree, shortest path, maximum (perfect) matching, and matroid intersection. Our construction also applies to multidimensional knapsack and multiunit combinatorial auctions. Our FPTASs compute a (1+ε)(1+\varepsilon)-approximate solution violating each budget constraint by a factor (1+ε)(1+\varepsilon). When feasible solutions induce an independence system, i.e., when subsets of feasible solutions are feasible as well, we present a PTAS (not violating any constraint), which combines the approach above with a novel monotone way to guess the heaviest elements in the optimum solution. Finally, we present a universally truthful Las Vegas PTAS for minimum spanning tree with a single budget constraint, where one wants to compute a minimum cost spanning tree whose length is at most a given value LL. This result is based on the Lagrangian relaxation method, in combination with our monotone guessing step and with a random perturbation step (ensuring low expected running time). This result can be derandomized in the case of integral lengths. All the mentioned results match the best known approximation ratios, which are, however, obtained by nontruthful algorithms

    Approximation Schemes for Multi-Budgeted Independence Systems

    Full text link
    A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Some classical optimization problems, such as spanning tree and forest, shortest path, (perfect) matching, independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. For two or more bud-gets, typically only multi-criteria approximation schemes are available, which return slightly infeasible solutions. Not much is known however for strict budget constraints: filling this gap is the main goal of this paper. It is not hard to see that the above-mentioned problems whose solution sets do not correspond to independence systems are inapproximable al-ready for two budget constraints. For the remaining problems, we present approximation schemes for a constant number k of budget constraints using a variety of techniques: i) we present a simple and powerful mech-anism to transform multi-criteria approximation schemes into pure ap-proximation schemes. This leads to deterministic and randomized ap-proximation schemes for various of the above-mentioned problems; ii) we show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a de-terministic approximation scheme for k-budgeted matroid independent set; iii) we present a deterministic approximation scheme for 2-budgeted matching. The backbone of this result is a purely topological property of curves in R2

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)
    • …
    corecore