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Abstract. In a classic optimization problem the complete input data is assumed to be known to
the algorithm. This assumption may not be true anymore in optimization problems motivated by the
Internet where part of the input data is private knowledge of independent selfish agents. The goal
of algorithmic mechanism design is to provide (in polynomial time) a solution to the optimization
problem and a set of incentives for the agents such that disclosing the input data is a dominant
strategy for the agents. In case of NP-hard problems, the solution computed should also be a good
approximation of the optimum.

In this paper we focus on mechanism design for multi-objective optimization problems. In this
setting we are given a main objective function, and a set of secondary objectives which are modeled
via budget constraints. Multi-objective optimization is a natural setting for mechanism design as
many economical choices ask for a compromise between different, partially conflicting goals. The
main contribution of this paper is showing that two of the main tools for the design of approxi-
mation algorithms for multi-objective optimization problems, namely approximate Pareto sets and
Lagrangian relaxation, can lead to truthful approximation schemes.

By exploiting the method of approximate Pareto sets, we devise truthful deterministic and ran-
domized multi-criteria FPTASs for multi-objective optimization problems whose exact version admits
a pseudo-polynomial-time algorithm, as for instance the multi-budgeted versions of minimum span-
ning tree, shortest path, maximum (perfect) matching, and matroid intersection. Our construction
also applies to multi-dimensional knapsack and multi-unit combinatorial auctions. Our FPTASs
compute a (1 + ε)-approximate solution violating each budget constraint by a factor (1 + ε).

When feasible solutions induce an independence system, i.e., when subsets of feasible solutions
are feasible as well, we present a PTAS (not violating any constraint), which combines the approach
above with a novel monotone way to guess the heaviest elements in the optimum solution.

Finally, we present a universally truthful Las Vegas PTAS for minimum spanning tree with a
single budget constraint, where one wants to compute a minimum cost spanning tree whose length is
at most a given value L. This result is based on the Lagrangian relaxation method, in combination
with our monotone guessing step and with a random perturbation step (ensuring low expected
running time). This result can be derandomized in the case of integral lengths.

All the mentioned results match the best known approximation ratios, which are however ob-
tained by non-truthful algorithms.
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1. Introduction. Amulti-objective combinatorial optimization problem is char-
acterized by a set S ⊆ 2U of feasible solutions defined over a ground set U of m ele-
ments, and a set of objective cost functions ℓi : U → Q+, i = 0, . . . , k. In this paper we
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assume k = O(1). The aim is to find a solution S ∈ S optimizing ℓi(S) =
∑

e∈S ℓi(e)
for all i, where optimizing means maximizing or minimizing, depending on the ob-
jective. A typical way to deal with multiple objectives is turning all the objectives
but one into budget constraints (see, e.g., [36] and references therein for related ap-
proaches). More formally, let X be the set of incidence vectors corresponding to
S, and Bi ∈ Q+, i = 1, . . . , k, a set of budgets1. Let also best ∈ {max,min} and
�i∈ {≥,≤} for i = 1, . . . , k. We consider a problem P defined as:

best
∑

e∈U

ℓ0(e)xe

s.t. x ∈ X (P)
∑

e∈U

ℓi(e)xe �i Bi for i = 1, . . . , k.

We will often refer to the ℓ0(e)’s as costs, and call lengths the remaining ℓi(e)’s. We
define �0=≥ if best = max, and �0=≤ otherwise. For a relation �, we say that a ≻ b
if a � b and a 6= b, and use ≺ for 6� and � for 6≻.

This framework naturally models network design problems with resource con-
straints. For example, in the budgeted minimum spanning tree problem (BMST) U is
the set of edges of a graph G = (V,E), S is the set of spanning trees of G, best = min
and there is a unique budget constraint with �1=≤. Here ℓ0(e) can be used to model,
e.g, the cost of establishing a link on e, and ℓ1(e) the delay on that edge. The bud-
geted shortest path problem (BSP) is defined analogously, where spanning trees are
replaced by the paths between two given nodes. Alternatively, (U ,S) might define
the intersection of two matroids.

In this paper we study this family of optimization problems from a game theo-
retical point of view. (For basic notions on algorithmic game theory, see, e.g., [31]).
We are given a set of selfish agents, where agent f controls element f ∈ U . The type
ℓf = (ℓ0(f), . . . , ℓk(f)) is considered as private knowledge of f . Agent f can lie by
declaring a type ℓ′f 6= ℓf , with the constraint ℓi(f) �i ℓ

′
i(f) for i = 1, . . . , k (while

ℓ′0(f) is arbitrary). In the BMST example above, agent f might declare a larger delay
ℓ′1(f) on f than the smallest possible ℓ1(f) in order to reduce her operational costs
(while f is not able to offer a delay smaller than ℓ1(f)). Moreover, f might declare
a cost larger than ℓ0(f) to maximize her revenue, or a smaller cost to maximize her
chances to be part of the solution. (For further motivations on this model of selfish
agents please refer to Section 2.)

The main goal of (utilitarian) mechanism design is to force f to declare her true
type. This is achieved by defining a set of payments pf , f ∈ U . Payments, types
and the computed solution define agents’ utility (see Section 2 for formal definitions).
Payments should be defined such that saying the truth is a dominant strategy, i.e.,
each agent maximizes her utility by declaring her true type, independently of what
the other agents declare. In that case the mechanism is truthful. At the same time,
we wish to design mechanisms which compute (efficiently) a solution approximating
the optimum in a standard sense, with respect to the declarations. The objective of
P is also called social welfare in this context.

1Part of our results can be extended to the case that zero values of the ℓi(e)’s and Bi’s are also
allowed. This however involves more technical algorithms and analysis, without introducing any
substantially new idea.
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1.1. Related Work. A classical technique to design truthful mechanisms is the
Vickrey-Clarke-Groves (VCG) mechanism [10, 20, 39] which however requires to solve
optimally the underlying optimization problem. For NP-hard problems one can use
the approach of [7, 24]; therein, it is shown that, in order to obtain truthfulness, it is
sufficient to design an approximation algorithm which is also monotone. Informally,
an algorithm is monotone if, assuming that it computes a solution containing an
element f for a given problem, then it computes a solution containing f also in the
case that we replace, for i ∈ {0, 1, . . . , k}, ℓi(f) with ℓ̄i(f) �i ℓi(f)

2.

Efficient monotone algorithms are known only for a few special cases of the frame-
work above. For example by setting best = max, �i=≤ for all i ≥ 1, and using a
trivial set of feasible solutions S = 2U , one can model the multi-dimensional knapsack
problem. For this problem a monotone O(k1/B) approximation is given in [7], where
B is the smallest budget. Their result extends to multi-unit combinatorial auctions
for unknown single-minded bidders (i.e., the setting in which bidders are interested in
only one set of goods and can lie on both valuation and set itself). (See [3, 12, 13, 23]
for results on more general types of bidders.) A monotone PTAS is known for multiple
knapsack [7], which can be modeled in our framework by letting one agent control a
constant number of elements. This extends to multi-unit unit-demand auctions for un-
known multi-minded bidders with the same valuation for each alternative. For graph
problems, monotone FPTASs are known for BSP and for BMST in the special case of
bounded-treewidth graphs [7]. We note that these FPTASs do not violate the budget
constraint, but it is not clear how to extend them to more than one budget. An-
other related result is a bicriteria monotone algorithm for the spanning arborescence
problem [5].

Multi-budgeted optimization in the standard (non-game-theoretical) sense is ex-
tensively studied in the literature. There are a few general tools for designing ap-
proximation algorithms for budgeted problems. One basic approach is combining
dynamic programming (which solves the problem for polynomial costs and lengths)
with rounding and scaling techniques (to reduce the problem to the case of polynomial
quantities). This leads for example to an FPTAS for BSP [21, 25, 40].

Another fundamental technique is the Lagrangian relaxation method. The basic
idea is relaxing the budget constraints, and lifting them into the objective function,
where they are weighted by Lagrangian multipliers. Solving the relaxed problem, one
obtains two or more solutions with optimal Lagrangian weight, which can—if needed—
be patched together to get a good solution for the original problem. Demonstrating
this method, Goemans and Ravi [35] gave a PTAS for BMST, which also extends to
1-budgeted matroid basis. Inspired by this approach, Correa and Levin [11] presented
algorithms for special classes of polynomial-time covering problems with an additional
covering constraint. Using the same approach as Goemans and Ravi, with an involved
patching step, Berger, Bonifaci, Grandoni, and Schäfer [4] obtained a PTAS for 1-
budgeted matching and 1-budgeted matroid intersection independent set. A PTAS for
2-budgeted matching was obtained by Grandoni and Zenklusen [18, 19]. The authors
also present a PTAS for k-budgeted matroid independent set, k = O(1). Finally a
PTAS for k-budgeted matching was given by Chekuri, Vondrák, and Zenklusen [9].

2Sometimes in the literature a weaker notion of monotonicity is considered, where only the cost
ℓ0(f) can change. Typically it is much simpler to adapt known approximation algorithms to achieve
that type of monotonicity. For example this holds for the primal-dual algorithm in [15]. Also optimal
solutions to linear programs are monotone in this sense (see [1]). However, only the stronger type of
monotonicity guarantees truthfulness with respect to all the parameters ℓi(f)’s.
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The authors also present a PRAS for k-budgeted matroid intersection3.
The mentioned algorithms provide strictly feasible solutions. Sometimes one

searches for multi-criteria PTASs, which compute a (1 + ε)-approximate solution
violating the budgets by a factor (1 + ε). Papadimitriou and Yannakakis [32] de-
scribe a very general technique, based on the construction of ε-approximate Pareto
sets (see Section 1.2 for more details about this technique). Their approach provides
multi-criteria FPTASs for k-budgeted spanning tree and k-budgeted shortest path.
Furthermore, it implies a multi-criteria FPRAS for k-budgeted (perfect) matching.
Grandoni and Zenklusen [18, 19] describe a simple technique to convert multi-criteria
PTASs/PRASs into pure PTASs/PRASs, with no violation of the budget constrains,
in the case that feasible solutions (satisfying also the budget constraints) induce an
independence system. We recall that an independence system is a set system (U ,S)
with the extra property that for any S ∈ S and S′ ⊆ S, one has S′ ∈ S (namely,
subsets of feasible solutions are feasible as well). This methods leads for example to
a PRAS for k-budgeted matching.

Grandoni, Ravi, and Singh [17, 18] show how to apply the iterative randomized
rounding technique to multi-budgeted optimization problems. They obtain a multi-
criteria PTAS for k-budgeted spanning tree and k-budgeted matroid basis where bud-
gets are violated by a factor (1 + ε) and the cost of the solution matches the optimal
cost. They also obtain a multi-criteria PTAS for k-budgeted bipartite matching, which
can be converted into a PTAS using the mentioned technique in [18, 19].

All mentioned problems are easy in the unbudgeted version. Given an NP-hard
unbudgeted problem which admits a ρ-approximation, the parametric search tech-
nique in [26] provides a multi-criteria kρ-approximation algorithm violating each bud-
get by a factor kρ for the corresponding problem with k budgets. Other techniques
lead to logarithmic approximation factors (see, e.g., [6, 34]).

1.2. Our contributions. Our main contribution is to show that two of the
main tools for the design of approximation schemes, namely approximate Pareto sets
and Lagrangian relaxation, can lead to monotone algorithms and thus to truthful
mechanisms. When monotone algorithms are randomized the notion of truthfulness
changes according to how the outcome of the random coin tosses influences the util-
ities; we focus here on the notions of probabilistic and universal truthfulness. We
recall that a randomized mechanism is probabilistically truthful if saying the truth is
a dominant strategy with high probability (see, e.g., [1]); a randomized mechanism is,
instead, universally truthful if saying the truth is a dominant strategy for every out-
come of the random bits. Universal truthfulness is the strongest form of truthfulness
for randomized mechanisms [13, 14, 30].

Monotone Construction of Approximate Pareto Sets. Our first contribution
is a family of monotone multi-criteria FPTASs for the optimization problems P con-
sidered here, whose exact version admits a pseudo-polynomial-time algorithm A (see
Section 3). We recall that, for a given weight function ϕ : U → Q+ and target
B, the exact version of P consists of finding a feasible solution S ∈ S of weight
ϕ(S) =

∑

e∈S ϕ(e) = B, if any. We implicitly assume that it is possible to remove
all the solutions containing a given e ∈ U from S in polynomial time such that the
resulting problem is of the same form of the original one (in this case we say that e
is discarded). This is trivially true for all the applications considered in this paper.

3A PRAS is a randomized PTAS, i.e., a PTAS which produces the desired solution with proba-
bility at least 1/2. FPRASs are defined analogously w.r.t. FPTASs.
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For example, in the BMST case it is sufficient to delete edge e from the graph. Our
approximation schemes compute, for any given ε > 0, a solution within a factor (1+ε)
of the optimum which violates each budget constraint by a factor of at most (1 + ε).
The running time is polynomial in the size of the input and 1/ε.

Theorem 1.1. There is a (probabilistically) truthful multi-criteria FPTAS for
multi-objective problems P admitting a pseudo-polynomial-time (Monte-Carlo) algo-
rithm for their exact version.

Our result implies truthful multi-criteria FPTASs for a number of natural prob-
lems. For example this covers the mentioned BMST and BST problems. One can also
handle the generalizations of BMST and BSP with multiple budgets (possibly with
budget lower bounds as well, which can be used to enforce, e.g., minimum quality
standards). This generalizes the results in [7]. Our approach also implies truthful
multi-criteria FPTASs for multi-dimensional knapsack and for multi-unit combinato-
rial auctions for unknown multi-minded bidders with same valuation for each alter-
native and a fixed number of goods. This extends and improves on the results in [7]
(see Section 1.1).

In the case of multi-budgeted (perfect) matching, where S is the set of (per-
fect) matchings of a given graph, the unique pseudo-polynomial-time exact algorithm
known is Monte-Carlo [28] (a deterministic algorithm is known when G is planar [2]).
In particular, with small probability this algorithm might fail to find an existing exact
solution. In this case we can still apply our technique, but the resulting FPTAS is
only probabilistically truthful. Using the reduction to matching in [2], we can achieve
the same result for the budgeted cycle packing problem: find a node-disjoint packing
of cycles of minimum cost and subject to budget constraints. The Monte-Carlo algo-
rithm in [8] implies a probabilistically truthful FPTAS for the multi-budgeted version
of the problem of finding a basis in the intersection of two matroids.

Our approach builds up on the construction of approximate Pareto sets by Pa-
padimitriou and Yannakakis [32]. More precisely, it exploits a sufficient condition
given by the authors for the efficient construction of such approximate Pareto sets. In
more detail, a Pareto solution S for a multi-objective problem is a solution such that
there is no other solution S′ which is as good as S on all objectives, and strictly better
on at least one objective. The (potentially exponentially big) set of Pareto solutions
defines the Pareto set. The authors of [32] introduce the notion of ε-approximate
Pareto set, i.e., a subset of solutions such that every Pareto solution is within a factor
(1 + ε) on each objective from some solution in the mentioned subset. They prove
that there is always an ε-approximate Pareto set of polynomial size (in the size of
the problem and 1/ε). Intuitively (and with the notation of this paper), consider
the (k + 1)-dimensional hyperrectangle induced by the range of solutions costs and
lengths. Subdivide this hyperrectangle into (polynomially many) sub-hyperrectangles
using powers of (1 + ε) in a standard way. It is sufficient to include in the approxi-
mate Pareto set one solution in each sub-hyperrectangle, if any (dominated solutions
can be filtered out at the end of the process). Equivalently, it is sufficient to solve
polynomially many instances of the following gap problem: given a collection of target
values B′

i, i = 0, . . . , k, either output a solution S with ℓi(S) �i B
′
i for all i, or prove

that there is no solution S such that ℓi(S) �i B
′′
i for all i, where B′′

i = B′
i(1 + ε) for

�i=≥ and B′′
i = B′

i/(1 + ε) otherwise.

In the same paper the authors show that a sufficient condition to solve one gap
problem in polynomial time (in the size of the problem and 1/ε) is the existence of a
pseudo-polynomial-time algorithm A for the exact version of the problem. The basic
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idea is to round costs, lengths, and target values so that they range in a polynomial-size
set. The rounding is such that the gap problem in the original instance is equivalent to
a feasibility problem in the rounded instance. It is easy to encode costs and lengths
in a unique weight function (with polynomially many possible values). Then it is
sufficient to guess the weight of some feasible solution, and use A to find a solution
of exactly that target weight. Their approach implies a multi-criteria FPTAS for the
associated optimization problems where all the objectives but one are turned into
budget constraints, i.e., for our framework: it is sufficient to explore the portion of
the ε-approximate Pareto set corresponding to almost feasible solutions, and output
the best such solution4.

In this paper we show how to make monotone the multi-criteria FPTAS above.
From the above discussion, we need to solve a few gap subproblems, and select the
best obtained solution. Unfortunately, even if we use a monotone algorithm to solve
each subproblem, the overall algorithm is not necessarily monotone. A similar issue
is addressed in [7, 27], by defining a property strictly stronger than monotonicity:
bitonicity. Roughly speaking, a monotone algorithm is bitonic if the cost of the so-
lution improves when the set of parameters improves and vice versa. The authors of
[7] show that a proper composition of bitonic algorithms is monotone and we use the
same basic approach. One extra issue that we need to address here is that the set of
solved subproblems changes when some value ℓ0(e) is modified, so that the composi-
tion of bitonic algorithms in [7, 27] cannot be directly applied. We address this issue
by expanding the set of subproblems suitably, and proving that the resulting algo-
rithm is equivalent to an ideal algorithm which solved infinitely many subproblems;
the composition theorem in [7, 27] can then be applied to this ideal algorithm.

Monotone Lagrangian Relaxation. The approach above relies on the existence
of a pseudo-polynomial-time exact algorithm and violates budget constraints by a
(1 + ε) factor. The second contribution of this paper is a technique based on the
Lagrangian relaxation method which achieves (strict) budget feasibility but which
cannot be used as a black-box as the FPTAS above (i.e., it requires the development
of complementary, problem-specific, techniques). Using this alternative approach, we
design a monotone Las Vegas5 PTAS for BMST. This implies a universally truthful
mechanism for the corresponding problem (see Section 4). We are able to derandomize
our result in the case of integer lengths. It remains open whether the same result is
possible also for arbitrary lengths6.

Theorem 1.2. There is a universally truthful Las Vegas PTAS for BMST. In
the special case that edge lengths are integral, there is a deterministic truthful PTAS
for BMST. For a comparison, in [7] a truthful FPTAS is given for the same problem
on bounded-treewidth graphs, while the deterministic PTAS in [35] is not truthful.

The basic idea is combining our framework based on the composition of bitonic
algorithms with the (non-monotone) PTAS of Ravi and Goemans [35]. Roughly speak-
ing, the PTAS in [35] works as follows (see also, e.g., [22, 29] and references therein
for the Lagrangian relaxation method). Recall that we search for a spanning tree S∗

of minimum cost ℓ0(S
∗) so that its length ℓ1(S

∗) is at most a given value L. For a

4We remark that also the converse is true: a multi-criteria FPTAS can be used to solve the gap
problem, hence to construct the approximate Pareto set.

5We recall that a Las Vegas polynomial time algorithm is an algorithm whose expected running
time is polynomial.

6This question has mostly a theoretical flavor: in most applications assuming integer lengths
(and even integer costs) is reasonable. The case of a bounded number of decimals can be easily
reduced to the integer case.
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spanning tree S, consider the Lagrangian cost cλ(S) = ℓ0(S) + λ(ℓ1(S) − L), where
λ ≥ 0 is the Lagrangian multiplier. A standard polynomial-time procedure computes
the maximum value LAG(λ∗) of cλ(S) over the possible values of λ and S. Let λ∗

be the value of λ achieving this maximum. Observe that LAG(λ∗) ≤ ℓ0(S
∗). The

same procedure also finds two spanning trees S− and S+, with ℓ1(S
−) ≤ L < ℓ1(S

+),
of optimal Lagrangian cost cλ∗(S−) = cλ∗(S+) = LAG(λ∗). By swapping edges in
a careful way for polynomially many times, one can also enforce S− and S+ to be
adjacent, i.e., one tree can be obtained from the other by swapping one edge. By con-
struction, ℓ0(S

+) ≤ cλ∗(S+) = LAG(λ∗) ≤ ℓ0(S
∗), hence ℓ0(S

−) ≤ ℓ0(S
∗) + ℓ0,max

where ℓ0,max is the maximum cost of one edge. In order to get a PTAS, Ravi and
Goemans simply guess the 1/ε most expensive edges of the optimal solution in a pre-
liminary step, and reduce the problem consequently (so that ℓ0,max introduces a small
factor in the approximation)7.

Standard guessing is not compatible with monotonicity (and hence with bitonic-
ity). To see that, consider the case that the modified element f is part of the guess,
and hence the edges of cost larger than f (other than guessed edges) are removed from
the graph. Then, decreasing the cost of f too much, leads to an unfeasible problem
where all non-guessed edges are discarded. In order to circumvent this problem, we
developed a novel guessing step, where, besides guessing heavy edges, we also guess
approximately their cost. This might seem counter-intuitive since one could simply
consider their real cost, but it is crucial to prove bitonicity. We also remark that
this has no (significant) impact on the running time and approximation factor of the
algorithm, since the number of guesses remains polynomial and at least one of them
correctly identifies the heaviest edges and their approximate cost. As far as we know,
this is the first time that guessing is implemented in a monotone way: this might be
of independent interest.

However, this is still not sufficient to achieve our goal. Indeed, there might be
exponentially many pairs (S−, S+) which satisfy the conditions of Ravi and Goemans’s
approach. This introduces symmetries which have to be broken in order to guarantee
bitonicity. One possibility is choosing, among the candidate pairs (S−, S+), the one
with largest ℓ0(S

−). Also in this case, choosing the worst-cost solution might seem
counter-intuitive. However, it is crucial to achieve bitonicity, and it has no impact
on the (worst-case) approximation factor. The desired solution can be found by
exploring exhaustively the space of the solutions of optimal Lagrangian cost. In fact,
these solutions induce a connected graph which can be visited, starting from any such
solution, in polynomial time in the size of the graph. The difficulty here is that this
graph can be exponentially large. We solve this problem by means of randomization,
in a way pretty close to the smoothed analysis of (standard) algorithms [38]. More
specifically, we randomly perturb the input instance by multiplying each cost by a
random, independent factor (close to one, to preserve the approximation ratio). After
this perturbation, with sufficiently high probability there will be only one candidate
pair (S−, S+). As a consequence, the running time of the algorithm is polynomial in
expectation (the algorithm is Las-Vegas).

For our mechanism viewed as a probability distribution over deterministic mech-
anisms (one for each possible value of the perturbation) to be universally truthful we

7The PTAS in [35] is presented to return an unfeasible solution adjacent to a feasible one. The
guessing is then done on the longest edges of the optimal solution. The two approaches are actually
equivalent approximation-wise but not for monotonicity. (It is easy to provide a counterexample for
the original one.)
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have to prove that each of these deterministic algorithms is monotone (in fact bitonic).
We prove this by a kind of sensitivity analysis of 2-dimensional packing linear pro-
grams that correspond to the lower envelope of lines representing spanning trees in
the Lagrangian relaxation approach of [35]. This analysis differs from the standard
packing LP sensitivity analysis (see, e.g., [37]) in that we also change an entry of the
LP matrix and not only the right-hand-side constants.

In the case of integer lengths, we first round the costs to make them integral,
and then add a proper deterministic perturbation to each cost. This way, we guar-
antee that there is at most one candidate pair (S−, S+) (hence the running time is
polynomial).

Independence Systems. Consider any problem P of the type considered in Theo-
rem 1.1, with the further constraint that its solution space induces an independence
system, i.e., such that removing any element from a feasible solution preserves fea-
sibility. We remark that by solution space we mean the solutions S ∈ S which also
satisfy the budget constraints. We also assume that we can remove in polynomial
time all the solutions in S not containing a given element e ∈ U (in this case we
say that e is selected). This family of problems includes, for example, the problem
of computing a (possibly non-perfect) matching of maximum cost, subject to budget
upper bounds. In that case the selection of an edge e can be obtained by deleting
e and all the edges incident to it, and decreasing by ℓi(e) each budget Bi. Given a
solution for the reduced problem, the corresponding solution for the original problem
is obtained by adding back e.

We can combine the monotone guessing step above with a variant8 of the truthful
FPTAS from Theorem 1.1 to obtain truthful PTASs for the mentioned problems. The
proof of the following theorem appears in Section 5.

Theorem 1.3. There is a (probabilistically) truthful PTAS for multi-objective
problems P whose feasible solutions induce an independence system and which admit
a pseudo-polynomial-time (Monte-Carlo) algorithm A for their exact version.

2. Preliminaries and Notation. As noted above, in this work we consider
the case in which the type ℓf = (ℓ0(f), ℓ1(f), . . . , ℓk(f)) of each agent f is private
information. We consider the general framework of generalized single-minded agents
introduced in [7]. For a given algorithm A, let S′ be the solution given in output by A
on input declarations (ℓ′e)e∈U . Agent f with type ℓf evaluates solution S′ according
to the following valuation function:
(2.1)

vf (S′, ℓf ) =















ℓ0(f) if best = max, f ∈ S′ and ℓ′i(f) �i ℓi(f) for i = 1, . . . , k;
−ℓ0(f) if best = min, f ∈ S′ and ℓ′i(f) �i ℓi(f) for i = 1, . . . , k;
−∞ if f ∈ S′ and ℓ′i(f) ≻i ℓi(f) for some i ∈ {1, . . . , k};
0 otherwise.

A mechanism is an algorithm A together with a payment function p. The mechanism
(A, p) on input (ℓ′e)e∈U computes a solution S′ and awards agent f a finite payment
pf ((ℓ′e)e∈U ) which is non-positive if best = max and non-negative when best = min.
Agent f derives utility

uf ((ℓ′e)e∈U , ℓ
f ) = vf (S′, ℓf ) + pf ((ℓ′e)e∈U ).

8A similar approach is used to obtain a (non-monotone) PRAS for the k-budgeted matching
problem in [18, 19].
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The mechanism is truthful if, for each agent f , the utility is maximized by truthtelling,
i.e.,

uf ((ℓf , ℓ′−f ), ℓf ) ≥ uf ((ℓ′f , ℓ′−f ), ℓf )

for each ℓ′f and ℓ′−f , with ℓ′−f denoting the declarations of all agents but f .
The following definition of monotonicity of an algorithm turns out to be very

useful in the design of truthful mechanisms.
Definition 2.1. Let S and S be the solutions computed by an algorithm A with

declarations (ℓe)e∈U and (ℓ̄e)e∈U , respectively. Algorithm A is monotone if f ∈ S
implies that f ∈ S̄ whenever ℓ−f = ℓ̄−f and ℓ̄i(f) �i ℓi(f) for all i ∈ {0, 1, . . . , k}.
From the previous definition, in order to prove the monotonicity of an algorithm, it is
sufficient to consider two declarations which are identical apart for exactly one entry
where ℓ̄′i(f) ≻i ℓ

′
i(f).

In [7, 24] it is shown that designing a monotone algorithm is sufficient to obtain
a truthful mechanism for agents with valuation and utility functions as above.

Lemma 2.2 ([7, 24]). For generalized single-minded agents, a monotone algorithm
A admits a payment function p such that (A, p) is a truthful mechanism for P.

We only outline here how monotone algorithms imply the existence of payment
functions, and thus of truthful mechanisms. For more details, please refer to [7, 24].
For the sake of simplicity, let us consider a standard (single-objective) maximization
problem. In particular, k = 0 here. Let A be a given monotone algorithm, and
consider a given agent f and a fixed value of ℓ′−f . The monotonicity of A implies
the existence of a critical value θAf (depending on ℓ′−f ), such that f is included in

the solution S output by A (f is winning) if ℓ′0(f) ≥ θAf , and f is not included in
S (f is not winning) otherwise. Consider the mechanism where the payment for a
winning agent f is the critical value θAf (given the declarations ℓ′−f of the remaining
agents), and the payment is zero if f is not winning. Note that critical values can
be computed by performing a binary search on the possible values ℓ′′0(f) of ℓ0(f) for
each agent f , and running A with declarations (ℓ′−f , ℓ′′0(f)). In [7, 24] it is shown
that such mechanism is truthful9.

The combination (e.g., taking the best solution) of monotone algorithms is not
necessarily monotone. To gain some intuition, consider the following simple example
given in [27]. We wish to sell a single good to a set of three agents {1, 2, 3}. Let
ℓ′0(i) =: vi be the value declared by agent i for the mentioned good. The objective
function is the value vi of the agent i who receives the good (0 if the good is not
assigned). Consider the following two algorithms. Algorithm A1 assigns the good to
bidder 2 if v1 ≤ 1, assigns the good to bidder 3 if 1 < v1 ≤ 2, and otherwise assigns
the good to bidder 1. Algorithm A2 instead does not assign the good if v1 < 1/2, and
assigns the good to bidder 1 if v1 ≥ 1/2 (bidders 2 and 3 never receive the good).

It is not hard to check that these two algorithms are monotone. Consider first
A1. The critical value for bidder 1 is θA1

1 = 2, independently from the declarations of
the other bidders. The critical values θA1

2 and θA1
3 are either 0 or +∞, depending on

v1. For algorithm A2, one has θA2
1 = 1/2 and θA2

2 = θA2
3 = +∞, independently from

the declarations of the other bidders. Consider next the algorithm A3 which simply
runs A1 and A2, and selects the solution which maximizes the objective value. It
turns our that A3 is not monotone. To see that, fix v2 = 1/2 and v3 = 3/2. Then,

9The results in [7, 24] also require the algorithm to be exact. In combinatorial auctions termi-
nology, an allocation algorithm is exact if it allocates to each bidder the declared set or nothing.
However, in our context any algorithm for P is exact due to the constraint xe ∈ {0, 1}.
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vi

Aj(vi)

j = 1, 2, 3

θA1
i θA2

iθA3
i

Fig. 1. Consider two bitonic algorithms A1 and A2. The thin (resp., thick) curves represents
the objective value A1(vi) (resp., A2(vi)) returned by A1 (resp., A2) as a function of the decla-
ration vi of agent i (assuming that the other declarations are fixed to some value). Consider the
algorithm A3 which outputs the solution of largest value among the ones output by A1 and A2. The
corresponding objective value A3(vi) is given by the dashed curve.

A3 does not assign the good to agent 1 if v1 ∈ [0, 1/2) ∪ (1, 3/2), and does assign the
good to agent 1 if v1 ∈ (1/2, 1). Hence the monotonicity property is not satisfied.

To handle cases like the one above, the following stronger notion of bitonicity
turns out to be useful. Intuitively, for a (single-objective) maximization problem, a
monotone algorithm A is bitonic (w.r.t. the objective function) if, for each agent
f and fixed ℓ′−f , the objective value of the solution found by A is a non-increasing
function of ℓ0(f) for ℓ0(f) < θAf , and it is a non-decreasing function of ℓ0(f) for

ℓ0(f) ≥ θAf . This property is sufficient to guarantee a monotone (bitonic, in fact)
composition of algorithms, see Figure 1 for an intuition. In the above example, A2 is
bitonic. On the other hand, A1 is not bitonic: e.g., if v2 < v3, at value v1 = 1 < θA1

1

the objective function increases. We remark that bitonicity can be also defined w.r.t.
some function different from the objective function.

We now apply bitonicity to our setting. Consider a cost function c : 2U → Q+.
Intuitively, c plays the same role as the objective function in the previous examples.
The choice of c will depend on the context.

Definition 2.3. Let S be the solution computed by an algorithm A with dec-
larations (ℓe)e∈U . For a vector (ℓ̄e)e∈U , with ℓ−f = ℓ̄−f and ℓ̄i(f) �i ℓi(f) for all
i ∈ {0, 1, . . . , k}, we let S denote the solution computed by A on input (ℓ̄e)e∈U . Al-
gorithm A is bitonic with respect to a cost function c(·) if the following properties
hold:

(i) If f ∈ S, then f ∈ S̄ and c̄(S̄) �0 c(S).
(ii) If f /∈ S, then either f ∈ S̄ or c̄(S̄) �0 c(S).

Observe that, for a maximization problem (�0=≥), this definition precisely means
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that when agent f is not winning (f /∈ S and f /∈ S̄) then the cost c(·) of the solution
is non-increasing (as function of ℓ0(f)), and when agent f is winning (f ∈ S and
f ∈ S̄) then the cost c(·) of the solution is non-decreasing.

In the following, we usually let P be the original problem and P̄ denote a problem
in which f changes its declaration as in the above definition. Observe that a bitonic
algorithm is monotone, while the vice versa is not necessarily true. As shown in [7],
bitonic algorithms can be combined to get a monotone algorithm.

Theorem 2.4. (Composition Theorem) [7] Consider a procedure M which
generates a (potentially infinite) family of subproblems P1, P2, . . ., solves each sub-
problem Pi with a procedureMi and returns the solution Si to problem Pi minimizing
(resp., maximizing) ci(Si), for given cost functions ci(·) (the best solution with largest
index i in case of ties). If each procedureMi is bitonic with respect to ci(·), thenM
is monotone.

We remark that, although no implementable algorithm produces an infinite family
of subproblems, we will need the technicality of infinitely many subproblems in the
proof of a few lemmas. For more details concerning this aspect we refer the reader to
[7].

In the following, we will denote by f the element whose type is modified according
to the definition of monotonicity/bitonicity, and by e a generic element. We use an
upper bar to denote quantities in the modified problem. By N we denote a dummy
(null) solution which is returned when no feasible solution exists. For notational
convenience, we will assume that N does not contain any element, and that it has
cost −∞ for best = max and +∞ otherwise.

Some considerations about our model. Generalized single-minded agents adapt
well to our setting. Consider again the case in which P models the BMST problem
and ℓ0(f) and ℓ1(f) are respectively the cost and the delay experienced when using
edge f . As noted, agent f cannot lie promising a delay smaller than her true one (or
otherwise the mechanism can a posteriori verify that the agent lied). In the valuation
function above, this is reflected by a valuation of −∞ for declarations in which agents
underbid the delay. (In other words, an agent would incur an infinite cost to provide
the service with a smaller delay.) More generally, the valuation functions that we
consider, model optimization problems P in which budgeted parameters are somehow
verifiable (thus implying that certain lies are irrational for a selfish agent).

Valuation function (2.1) connects with two different research areas in algorith-
mic mechanism design. Mechanisms with verification, introduced by [30] and further
studied in [33] (see also references therein), exploit the observation that the execu-
tion of the mechanism can be used to verify agents misreporting their types (i.e., the
entire type must be verifiable). On the contrary, in our framework this assumption
is only made for budgeted parameters, i.e., ℓ0(·)’s can model unverifiable quantities
(e.g., costs). Valuation function (2.1) expresses the valuation of single-minded bid-
ders in a combinatorial auction (considered the paradigmatic problem in algorithmic
mechanism design) using exact allocation algorithms. Indeed, it is enough to consider
the budgeted parameter as the demand set (i.e., a bidder evaluates −∞ a set which
is not a superset of her unique demand set).

Observe that if we would allow unrestricted ways of lying on budgeted parameters
then even a VCG mechanism (using an exponential-time optimal algorithm) would not
be truthful for a multi-objective optimization problem P. To see this, consider again
the BMST problem and take as instance a triangle graph with delay budget L. Name
the three edges of the graph e1, e2 and e3 and assume the true types to be ℓe1 = (ε, ε),
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ℓe2 = (0, 0) and ℓe3 = (0, H) for some 0 < ε ≤ L and H > L. When agents are
truthtelling the VCG mechanism would select the only feasible tree comprised of edges
e1 and e2. The utility of edge e3 is in this case 0. Now consider edge e3 misreporting
her type as follows: ℓ

e3
= (0, L). In this case the VCG mechanism would output the

spanning tree {e2, e3} (i.e., the minimum cost tree among the seemingly feasible ones)
and pay agent e3 an amount of ε > 0. Since the true cost of e3 is 0 then e3 has a strict
improvement of her utility by lying. (Note that on the contrary in our generalized
single-minded setting the valuation of e3 would be −∞ in this case.) VCG fails since
there is a part of agents’ type (namely, the delay) whose lies are not reflected in the
objective function considered by VCG (which is only the sum of the costs). Note,
however, that overbidding the delay can only shrink the set of seemingly feasible
solutions and thus gives no advantages to unselected agents. Indeed, as observed
above VCG is truthful (though not efficient) in our generalized single-minded setting.
Finally, we remark that the example described above can be tweaked to show that
no algorithm with polynomially bounded approximation guarantee can be used to
obtain a truthful mechanism satisfying a strict form of voluntary participation (i.e.,
a mechanism in which selected agents always have a strictly positive utility). It is
enough to consider the same instance with ℓe1 = (M, ε) and ℓe2 = (1, 0). Any M -
approximation algorithm in input ℓe1 , ℓe2 and ℓ̄e3 must select the tree comprised of
edges e2 and e3.

We conclude that generalized single-minded agents is a general framework moti-
vated by combinatorial auctions that well encompasses the multi-objective optimiza-
tion problems that we consider.

3. Exact Algorithms and Monotone Multi-Criteria FPTASs. In this sec-
tion we restrict our attention to multi-objective optimization problems P whose exact
version admits a pseudo-polynomial-time algorithm A. We focus here on the case that
A is deterministic, the randomized case being analogous. For these problems we de-
scribe a monotone multi-criteria FPTAS multi. Recall that we assume that one can
in polynomial time discard an element e in the sense described in the introduction.
Our approach is inspired, approximation-wise, by the construction of ε-approximate
Pareto sets in [32], and crucially exploits the combination of bitonic procedures to
achieve monotonicity.

3.1. Algorithm. Algorithm multi is described in Figure 2.10. The basic idea
is to generate a family of subproblems P1, . . . ,Pq. Each subproblem Pj is solved by
means of a procedure feasible, hence obtaining a solution Sj and a cost function
ℓ0,j(·) (Step M1). This procedure is designed in order to be bitonic with respect
to ℓ0,j(·) on subproblem Pj . Eventually multi returns the solution Sh optimizing
ℓ0,h(Sh), the best solution with largest index h in case of ties (Step M2).

In more detail, let ℓ0,min and ℓ0,max be the smallest and largest cost ℓ0, respec-
tively. We define B0,1≺0 . . .≺0B0,q to be all the (positive and/or negative) powers of
(1 + ε) between proper boundary values. Intuitively, B0,j is an approximate guess of
the cost of OPT . The case that OPT is empty, and hence has cost zero, is handled
in Step M2. For each B0,j , Pj is the feasibility problem obtained by considering the
set of constraints of the original problem P, plus the constraint

∑

e∈U ℓ0(e)xe�0B0,j .
For a given subproblem Pj with B0 := B0,j , procedure feasible computes an

ε-feasible solution to Pj , i.e., a solution Sj ∈ S such that each budget constraint is

10The interested reader might initially just focus on the case that �i=≥ for all i, which is probably
more intuitive given our notation.
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multi(P, ε)

M1: Let B0,1≺0 . . .≺0B0,q be the powers of (1 + ε) between ℓ0,min
1

m(1+ε)
and

mℓ0,max⌈
m(1+ε)

ε
⌉. For j = 1, . . . , q, let (Sj , ℓ0,j(·)) = feasible(Pj , ε, B0,j).

M2: Return the solution S∗ = Sh 6= N optimizing ℓ0,h(Sh), the best solution with
largest index h in case of ties. If no such solution exists, return ∅ if it is feasible,
and otherwise N .

feasible(P, ε, B0)

F1: For all e ∈ U :

F1a: If �0=≥: B′
0=⌈m

ε
⌉, I0={B′

0, B
′
0 + 1, . . . ,mB′

0}. ℓ0(e) := min{ℓ0(e), B0}.

Let ℓ′0(e) = ⌊
B′

0
B0

ℓ0(e)⌋.

F1b: If �0=≤: B′
0=⌈m(1+ε)

ε
⌉, I0={0, 1, . . . , B′

0}. Discard all {e : ℓ0(e) > B0}.

Let ℓ′0(e) = ⌈
B′

0
B0

ℓ0(e)⌉.

F2: For i = 1, . . . , k, for all e ∈ U :

F2a: If�i=≥: B′
i=⌈m(1+ε)

ε
⌉, Ii={B′

i, B
′
i+1, . . . ,mB′

i}. ℓi(e) := min{ℓi(e), Bi}.

Let ℓ′i(e) = ⌈
B′

i

Bi
ℓi(e)⌉.

F2b: If �i=≤: B′
i=⌈m

ε
⌉, Ii={0, 1, . . . , B′

i}. Discard all {e : ℓi(e) > Bi}. Let

ℓ′i(e) = ⌊
B′

i

Bi
ℓi(e)⌋.

F3: Let M = m⌈m(1+ε)
ε

⌉+1 and ϕ(·) =
∑k

i=0 M
iℓ′i(·). For all z = (z0, z1, . . . , zk) ∈

×k
i=0Ii:

• Let Bz =
∑k

i=0 M
izi. Use A to compute a solution Sz ∈ S with ϕ(Sz) =

Bz. (The solution with lexicographically largest incidence vector in case
of ties.) If no feasible solution exists, Sz = N .

F4: Let S∗
z 6= N be the solution Sz with lexicographically best z (S∗

z = N if no such
solution exists). Return (S∗

z ,
B0
B′

0
ℓ′0(·)).

Fig. 2. Algorithm multi.

violated at most by a factor (1 + ε). Moreover, feasible returns a cost function
ℓ0,j(·) such that the behavior of feasible is bitonic with respect to function ℓ0,j(·)
on subproblem Pj (more details in the proof of Lemma 3.2). In order to achieve
this goal, feasible first constructs an auxiliary feasibility problem P ′

j , with lengths
ℓ′i(e) and budgets B′

i which are polynomially-bounded in m/ε (Steps F1 and F2).
The definitions of those auxiliary lengths and budgets are such that any feasible
(w.r.t. ℓi(·), i ≥ 1) solution for Pj is feasible for P ′

j , and every feasible solution
to P ′

j is ε-feasible (w.r.t. ℓi(·), i ≥ 1) for Pj (more details in the proof of Lemma
3.1). Then feasible finds a feasible solution for P ′

j by encoding this problem in a
proper family of exact problems, which are solved by means of A (Step F3). Each
exact problem is indexed by a vector z = (z0, . . . , zk) in a proper domain ×k

i=0Ii.
Consider the length vector Λ(·) = (ℓ′0(·), . . . , ℓ

′
k(·)). The solution Sz returned for the

exact problem indexed by z, if non-null, satisfies Λ(Sz) = z (here we exploit the fact
that M is large enough compared to the quantities ℓ′i(·)). The domain ×k

i=0Ii covers
all the possible feasible length vectors. Hence, if there is a feasible solution to P ′

j ,
i.e., a solution Sj with ℓ′i(Sj) �i B

′
i for all i, this solution will be found by feasible.

Eventually (Step F4), among the feasible solutions Sz obtained, feasible returns the
solution optimizing in lexicographic sense z, with the lexicographic order � induced
by the �i’s. Choosing the best z in lexicographic sense, besides providing a good
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approximation ratio (due to the fact that we optimize z0 first), is crucial to enforce
bitonicity.

Note that in Step F3, in case of multiple solutions of target value B, the algorithm
returns the solution of largest incidence vector. This tie breaking rule is also crucial
to achieve bitonicity. It is easy to modify a given exact algorithm A to enforce this
property. Let e1, e2, . . . , em be the elements, and B′ = B. For i = 1, . . . ,m, we add
a very large (but still polynomial) value L to ϕ(ei), and ask for a solution of target
value L + B′. For L large enough, any such solution must contain ei. If no such
solution exists, we discard ei. Otherwise, we set B′ ← B′ + L. In both cases we
proceed with next edge. Here we exploit the assumption that discarding one element
does not change the nature of the considered problem.

3.2. Analysis. Let us bound the running time and approximation factor of
multi.

Lemma 3.1. Algorithm multi computes a (1+ε)2-approximate solution, violating
each budget constraint at most by a factor (1+ ε). The running time of the algorithm
is polynomial in the size of the input and 1/ε.
Proof. Consider the running time of feasible on a given subproblem Pj . Lengths
ℓ′i(·) and budgets B′

i are polynomially bounded in m/ε. Consequently, the number of
exact problems generated to solve P ′

j is O((m/ε)k) = O((m/ε)O(1)) since k is constant.
Also, the fact that k = O(1) implies that the values of ϕ(·) and B of each exact
problem satisfy the same bound. Since A is a pseudo-polynomial-time algorithm, it
follows that each exact problem can be solved in O((m/ε)O(1)) time. Altogether, the
running time of feasible is O((m/ε)O(1)). The number of subproblems generated

by multi is O(log1+ε
m ℓ0,max

εℓ0,min
), which is polynomial in the size of the input and 1/ε.

The running time bound follows.
Consider now the approximation factor. We initially observe that the solution S∗

returned by the algorithm violates each budget constraint at most by a factor (1+ ε).
Indeed, consider any solution S returned for some subproblem P ′

j and any i ≥ 1. If
�i=≥, one has:

ℓi(S) =
Bi

B′
i

∑

e∈S

B′
i

Bi
ℓi(e) ≥

Bi

B′
i

∑

e∈S

(⌈

B′
i

Bi
ℓi(e)

⌉

− 1

)

=
Bi

B′
i

∑

e∈S

(ℓ′i(e)− 1)

≥ Bi −
Bi

B′
i

m = Bi −
Bim

⌈m(1 + ε)/ε⌉
≥ Bi −

Bim

m(1 + ε)/ε
=

Bi

(1 + ε)
.

Otherwise (�i=≤),

ℓi(S) =
Bi

B′
i

∑

e∈S

B′
i

Bi
ℓi(e) ≤

Bi

B′
i

∑

e∈S

(⌊

B′
i

Bi
ℓi(e)

⌋

+ 1

)

=
Bi

B′
i

∑

e∈S

(ℓ′i(e) + 1)

≤ Bi +
Bi

B′
i

m = Bi +
Bim

⌈m/ε⌉
≤ Bi +

Bim

m/ε
= Bi(1 + ε).

In both cases, in the second inequality we used the feasibility of S w.r.t. P ′
j .

We next show that Sh := S∗ is (1 + ε)2-approximate. The claim is trivially
true if there is no feasible solution or the optimum solution is empty. Otherwise,
let OPT 6= ∅ be an optimum solution to the original problem instance. Consider
first the case that �0=≥ (i.e., we are considering a maximization problem). Recall
that B0,1 < . . . < B0,q are powers of (1 + ε). Let j be the largest index such that
ℓ0(OPT ) ≥ B0,j(1 + ε). In particular, ℓ0(OPT ) < B0,j+1(1 + ε) = B0,j(1 + ε)2.
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Observe that there is one such value B0,j , since ℓ0,min ≤ ℓ0(OPT ) ≤ mℓ0,max. Note
that OPT is feasible for P ′

j , i.e., ℓ
′
i(OPT ) �i B

′
i for i ≥ 0. To see this, consider an

execution of (Sj , ℓ0,j(·)) = feasible(Pj , ε, B0,j) in algorithm multi. Observe that

ℓ′0(·) = ℓ0,j(·)
B′

0,j

B0,j
, B0 = B0,j , and B′

0 = B′
0,j . For any i ≥ 1,

ℓ′i(OPT ) =
∑

e∈OPT

ℓ′i(e) �i

∑

e∈OPT

B′
i

Bi
ℓi(e) �i

B′
i

Bi
Bi = B′

i.

In the first inequality above we used the fact that, ℓ′i(e) = ⌈B
′

i

Bi
ℓi(e)⌉ ≥

B′

i

Bi
ℓi(e) for

�i=≥, and that ℓ′i(e) = ⌊B
′

i

Bi
ℓi(e)⌋ ≤

B′

i

Bi
ℓi(e) otherwise. In the second inequality

above we used the fact that OPT is feasible w.r.t. the original problem. Moreover,

ℓ′0(OPT ) =
∑

e∈OPT

ℓ′0(e) =
∑

e∈OPT

⌊

B′
0

B0
ℓ0(e)

⌋

≥
∑

e∈OPT

B′
0

B0
ℓ0(e)− 1 ≥ B′

0(1 + ε)−m ≥ B′
0.

In the second inequality above we used the assumption ℓ0(OPT ) ≥ B0,j(1 + ε) =
B0(1 + ε). In the third inequality above we used the fact that B′

0 =
⌈

m
ε

⌉

≥ m
ε .

Since OPT is feasible, a solution Sj is returned for subproblem Pj . By the
optimality of Sh, ℓ0,h(Sh) ≥ ℓ0,j(Sj). It follows that

B0,h

B′
0,h

ℓ′0,h(Sh) =ℓ0,h(Sh) ≥ ℓ0,j(Sj) =
B0,j

B′
0,j

ℓ′0,j(Sj) ≥ B0,j>
ℓ0(OPT )

(1 + ε)2
.

In the second inequality above we used the feasibility of Sj and in the last inequality
the assumption ℓ0(OPT ) < B0,j(1 + ε)2. The cost of S∗ = Sh then satisfies

ℓ0(Sh) =
B0,h

B′
0,h

∑

e∈Sh

B′
0,h

B0,h
ℓ0(e) ≥

B0,h

B′
0,h

∑

e∈Sh

⌊

B′
0,h

B0,h
ℓ0(e)

⌋

=
B0,h

B′
0,h

∑

e∈Sh

ℓ′0,h(e) =
B0,h

B′
0,h

ℓ′0,h(Sh)>
ℓ0(OPT )

(1 + ε)2
.

The case �0=≤ is analogous. Here B0,1 > . . . > B0,q are powers of (1 + ε), and
we let j be the largest index such that ℓ0(OPT ) ≤ B0,j/(1 + ε) (hence ℓ0(OPT ) >
B0,j+1/(1 + ε) = B0,j/(1 + ε)2. Also in this case OPT is feasible for P ′

j . For i ≥ 1,
one can show that ℓ′i(OPT ) �i B

′
i is the same way as in the previous case. Moreover

ℓ′0(OPT ) =
∑

e∈OPT

ℓ′0(e) =
∑

e∈OPT

⌈

B′
0

B0
ℓ0(e)

⌉

≤
∑

e∈OPT

B′
0

B0
ℓ0(e) + 1 ≤

B′
0

1 + ε
+m ≤ B′

0.

In the last inequality above we used the fact that B′
0 =

⌈

m(1+ε)
ε

⌉

. It follows that

B0,h

B′
0,h

ℓ′0,h(Sh) =ℓ0,h(Sh) ≤ ℓ0,j(Sj) =
B0,j

B′
0,j

ℓ′0,j(Sj) ≤ B0,j<ℓ0(OPT )(1 + ε)2.
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We can conclude that that the cost of the approximate solution S∗ = Sh satisfies

ℓ0(Sh) =
B0,h

B′
0,h

∑

e∈Sh

B′
0,h

B0,h
ℓ0(e) ≤

B0,h

B′
0,h

∑

e∈Sh

⌈

B′
0,h

B0,h
ℓ0(e)

⌉

=
B0,h

B′
0,h

∑

e∈Sh

ℓ′0,h(e)

=
B0,h

B′
0,h

ℓ′0,h(Sh)<ℓ0(OPT )(1 + ε)2.

We next prove the bitonicity of feasible: via the Composition Theorem 2.4 this
will imply the monotonicity of multi.

Lemma 3.2. Procedure feasible is bitonic with respect to ℓ0,j(·) on subproblem
Pj.

Proof. Consider an execution of (Sj , ℓ0,j(·)) = feasible(Pj , ε, B0,j) in algorithm

multi. Observe that ℓ′0(·) = ℓ0,j(·)
B′

0,j

B0,j
, B0 = B0,j , and B′

0 = B′
0,j . Let also S̄j be

the solution output by feasible for problem P̄j .
Since ℓ0,j(·) = B0

B′

0
ℓ′0(·), it is sufficient to prove bitonicity with respect to ℓ′0(·).

Suppose we modify ℓs(f) to ℓ̄s(f) �s ℓs(f) for some s ∈ {0, . . . , k}. Observe that
this implies ℓ̄′s(f) �s ℓ′s(f). Consider the case ℓ̄′s(f) = ℓ′s(f): here Sj = S̄j and so
the algorithm is trivially bitonic. Then assume ℓ̄′s(f) ≻s ℓ′s(f). By F we denote the
set of feasible solutions to P ′

j computed by A. Note that F ⊆ F̄ , since every feasible

solution to P ′
j is feasible for P̄

′
j as well. Moreover, every solution in F̄ \F must contain

f .
For two solutions S̄ and S and two length vectors Λ̄ and Λ, recall that by def-

inition Λ̄(S̄) � Λ(S) iff, for some j ∈ {0, . . . , k}, ℓ̄′i(S̄) = ℓ′i(S) for i = 0, . . . , j,
and ℓ̄′j+1(S̄) ≻j+1 ℓ′j+1(S) if j < k. Consider first the case f ∈ Sj . We will

show that f ∈ S̄j and Λ̄(S̄j) � Λ(Sj) (which implies ℓ̄′0(S̄j) �0 ℓ′0(Sj)). Note that
Λ̄(Sj) ≻ Λ(Sj) since ℓ̄′s(f) ≻s ℓ′s(f). Moreover, because Sj ∈ F ⊆ F̄ and the algo-
rithm returns in Step F4 the lexicographically best solution, we have Λ̄(S̄j) � Λ̄(Sj).
As a consequence, Λ̄(S̄j) � Λ̄(Sj) ≻ Λ(Sj). On the other hand, for any f /∈ S′ ∈ F ,
Λ̄(S′) = Λ(S′) � Λ(Sj) (where � again follows from Step F4), and hence S′ 6= S̄j .
We can conclude that f ∈ S̄j .

Suppose now f /∈ Sj and f /∈ S̄j . We will show that S̄j = Sj (which implies
ℓ̄′0(S̄j) �0 ℓ′0(Sj)). Since all the solutions in F̄ \ F contain f , S̄j ∈ F . Then Λ̄(S̄j) =
Λ(S̄j) � Λ(Sj) = Λ̄(Sj) � Λ̄(S̄j) (where we referred to Step F4 twice), which implies
Λ̄(S̄j) = Λ(Sj). Therefore the set of solutions not containing f which optimize the
length vector Λ is exactly the same in the two problems. This implies that S̄j = Sj

by the lexicographic optimality of the solutions computed.
Lemma 3.3. Algorithm multi is monotone.
Proof. It is sufficient to consider the case that the solution to the original problem

is not ∅ nor N . Consider the variant ideal of multi which spans all the (infinitely
many) powers of (1 + ε). Observe that ideal and multi output exactly the same
solution (both in the original and in the modified problem). In fact, consider the case

�0=≥. For B0 <
ℓ0,min

m , we have ℓ′0(e) = B′
0 for all e, which leads to a solution of

ℓ0,j cost at most B0

B′

0
mB′

0 < ℓ0,min. On the other hand, for B0 > mℓ0,max⌈
m(1+ε)

ε ⌉,

we have ℓ′0(e) = 0 for all e, which leads to a solution of ℓ0,j cost zero. Observe that
in both cases the solutions computed by ideal only are not better than the solutions
computed by multi. The case �0=≤ is symmetric. For B0 < ℓ0,min all the edges are

discarded and the problem becomes unfeasible. For B0 > mℓ0,max⌈
m(1+ε)

ε ⌉, we have

ℓ′0(e) = 1 for all e, which leads to a solution of ℓ0,j cost at least B0

B′

0
> mℓ0,max. Also



Utilitarian Mechanism Design for Multi-Objective Optimization 17

in this case the solutions computed by ideal only are not better than the solutions
computed also by multi. By Lemma 3.2 and the Composition Theorem 2.4, ideal is
monotone. We can conclude that multi is monotone as well.

The deterministic part of Theorem 1.1 follows from Lemmas 2.2, 3.1, and 3.3. The
randomized part of Theorem 1.1 follows analogously by observing that one can make
the failure probability of each execution of A (and hence of the overall algorithm)
polynomially small.

4. Lagrangian Relaxation and Budgeted Minimum Spanning Tree. In
this section we investigate a different approach to the design of truthful mechanisms,
based on the classical Lagrangian relaxation method. With this approach, we obtain a
monotone randomized PTAS bmst for the budgeted minimum spanning tree problem
(BMST). This implies a universally truthful mechanism for the corresponding game.
We are also able to derandomize our PTAS in the special case of positive integer
lengths.

Let us start by introducing some preliminary notions. For notational convenience,
let c(·) = ℓ0(·), ℓ(·) = ℓ1(·) and L = B1. By cmin and cmax we denote the smallest
and largest cost, respectively. BMST can be defined as follows:

min
∑

e∈E

c(e)xe

s.t. x ∈ X
∑

e∈E

ℓ(e)xe ≤ L

Here X denotes the set of incidence vectors of spanning trees of the input graph
G = (V,E). For a Lagrangian multiplier λ ≥ 0, the Lagrangian relaxation of the
problem is (see [35])

LAG(λ) = min
∑

e∈E

c(e)xe + λ · (
∑

e∈E

ℓ(e)xe − L)

s.t. x ∈ X

The problem above is essentially a standard minimum spanning tree problem, with
respect to the Lagrangian costs c′(e) = c(e) + λ ℓ(e). Observe that, for any λ ≥ 0,
LAG(λ) ≤ OPT . We let λ∗ (optimal Lagrangian multiplier) be a value of λ ≥ 0
which maximizes LAG(λ). In case of a tie, we let λ∗ be the smallest such value. If
λ∗ =∞, there is no feasible solution. We remark that λ∗ can be computed in strongly-
polynomial-time, using, say, Megiddo’s parametric search technique (see, e.g., [35]).

Function LAG(λ) has a natural geometric interpretation. For any spanning tree
S with incidence vector x(S), cλ(S) :=

∑

e∈E c(e)xe(S) + λ · (
∑

e∈E ℓ(e)xe(S)−L) is
a linear function of the multiplier λ. The slope of cλ(S) is positive if S is unfeasible,
and non-positive otherwise. LAG(λ) is the lower envelope of the lines cλ(S), for λ ≥ 0
and S ∈ S. Observe that LAG(λ) is concave and piecewise linear. We will refer to
cλ(S) as the line associated to S. When no confusion is possible, we will sometimes
use the notion of spanning tree and of the corresponding line interchangeably. We
observe the following useful fact.

Lemma 4.1. Consider the lower envelope LE of the lines of a set of solutions.
Let cλ(S

1), cλ(S
2), . . . , cλ(S

q) be the lines intersecting LE, sorted in decreasing order
of length ℓ(Si) (breaking ties arbitrarily). Then, for i < j, c(Si) ≤ c(Sj).
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bmst(P, ε)

B1: For all e ∈ E, independently generate an integer te uniformly at random in
{1, . . . , 2T 4}, T = 2m, and replace c(e) with c(e)(1 + ε te

2T4 )

B2: Let c1 ≤ . . . ≤ cq be the powers of (1+ε) between cmin/(1+ε) and cmax(1+ε).
Let 1, . . . , h denote all the pairs (F, g(·)) with F ⊆ E, |F | = 1

ε
, and g : F →

{c1, . . . , cq}. For a given pair j = (Fj , gj(·)), define subproblem Pj by: (i)
contracting the edges of Fj ; (ii) deleting the edges of value larger than Cj :=
mine∈Fj{gj(e)}; (iii) decreasing L by ℓ(Fj). Compute Sj = lagrangian(Pj).

B3: Return the solution Fj ∪Sj , Sj 6= N , minimizing c(Fj)+ c(Sj), and maximizing
j in case of ties (N if no such solution exists).

lagrangian(Pj)

L1: Compute the optimal Lagrangian multiplier λ∗, the smallest one in case of ties.

L2: If λ∗ = 0, return the solution S− of minimum-slope intersecting LAG at λ∗.

L3: If λ∗ = +∞, return N .

L4: Compute a pair of adjacent solutions S− and S+, of non-positive and positive
slope, respectively. In case of ties, the pair where c(S−) is maximized and, as a
second choice, the incidence vector of S− is minimized. Return S−.

Fig. 3. Algorithm bmst.

Proof. It is sufficient to show that, for any i = 1, 2, . . . , q− 1, c(Si) ≤ c(Si+1). If lines
Si and Si+1 overlap, the claim is trivially true since in that case c(Si) = c(Si+1).
Otherwise, let λ′ be the value of λ for which cλ′(Si) = cλ′(Si+1) (the two lines cannot
be parallel, since they both intersect LE).Recall that ℓ(Si) ≥ ℓ(Si+1) by assumption.
Then

c(Si) =cλ′(Si)− λ′(ℓ(Si)− L) ≤ cλ′(Si)− λ′(ℓ(Si+1)− L)

=cλ′(Si+1)− λ′(ℓ(Si+1)− L) = c(Si+1).

4.1. Algorithm. Algorithm bmst is described in Figure 3. Let ε ∈ (0, 1] be a
given constant parameter. W.l.o.g., we can assume that the graph contains at least
2 + 1/ε nodes (and hence any spanning tree at least 1 + 1/ε edges). Otherwise, we
can solve the problem optimally in polynomial time by brute force. Furthermore, the
brute force algorithm can be easily made monotone with a careful implementation.
The algorithm initially randomly perturbs the edge costs (Step B1). The factor T =
2m in the perturbation is simply an upper bound on the number of spanning trees.
Our perturbation will ensure, with high probability, that no more than two lines
corresponding to spanning trees intersect at any given point.

Then (Step B2), the algorithm generates a polynomial set of subproblems P1,
P2, . . . , Ph. Intuitively, each subproblem corresponds to a guess of the most expensive
edges in the optimum solution OPT , and to a guess of their approximate cost. More
precisely, each subproblem j is labeled by a pair (Fj , gj(·)), where Fj is a subset of
1/ε edges, and gj : Fj → C, where C = {c1, . . . , cq} is a proper set of powers of
(1 + ε). Given a pair j = (Fj , gj(·)), subproblem Pj is obtained by contracting edges
Fj , deleting all the edges of cost larger than Cj := mine∈Fj

{gj(e)}, and decreasing
L by ℓ(F ). Note that, when we contract an edge, this might create parallel edges.
However this does not create any problem since lagrangian works for multi-graphs
as well.
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Each subproblem Pj is solved by means of a procedure lagrangian, based on
the Lagrangian relaxation method. In particular, following [35], among the solutions
intersecting LAG at λ∗, we select two adjacent solutions S− and S+, of non-positive
and positive slope respectively, and return Sj = S−. We recall that two spanning
trees S− and S+ are adjacent in the spanning tree polytope if there are edges e+ and
e− such that S− = S+ \ {e+} ∪ {e−}. As mentioned in the introduction, in case of
ties we select the pair (S−, S+) with maximum c(S−).

Eventually (Step B3), bmst returns the (feasible) solution Fj ∪ Sj of minimum
cost c(Fj ∪ Sj) = c(Fj) + c(Sj) (and largest index j in case of ties).

4.2. Analysis. We remark that the values te in the perturbation are indepen-
dent from edge costs and lengths, and hence we can assume that they are the same
in the original (Pj) and modified (P̄j) problems. In other words, each choice of the
te’s specifies one deterministic algorithm. We will show that each such algorithm
is monotone. Note also that monotonicity on the perturbed instance implies mono-
tonicity on the original instance, since the perturbation does not change the sign of
the difference between modified and original costs/lengths. As a consequence, the
resulting mechanism will be universally truthful. The random perturbation has the
following property.

Lemma 4.2. After the perturbation, with probability at least 1 − 1/T , all the
spanning trees correspond to different lines, and at most two lines intersect at a given
point.

Proof. Consider any two lines S1 and S2, and let ℓi and ci be the length and
perturbed cost of Si, respectively. The two lines overlap if and only if c1 = c2 and
ℓ1 = ℓ2. Let us condition over the cost of all the edges of S1 and of all the edges of
S2 but one. Then c2 is a random variable which takes one value uniformly at random
in a set of 2T 4 distinct values. Hence the event {c1 = c2} happens with probability
at most 1/2T 4.

Consider now any three lines S1, S2 and S3. With the same notation as above,
these three lines intersect at the same point if and only if

{

c1 + λ(ℓ1 − L) = c2 + λ(ℓ2 − L)

c1 + λ(ℓ1 − L) = c3 + λ(ℓ3 − L),

for some value λ ≥ 0. If ℓ1 = ℓ2, it must be c1 = c2 which happens with probability at
most 1/2T 4 by the same argument as before. Otherwise it must be c3 = c1+λ(ℓ1−ℓ3)
with λ = (c1−c2)/(ℓ2−ℓ1): this happens with probability at most 1/2T 4 by a similar
argument.

Since there are at most T 2 pairs and T 3 triples of the kind above, by the union
bound the probability that the property of the claim is not satisfied is at most
T 2/(2T 4) + T 3/(2T 4) ≤ 1/T .

Lemma 4.2 immediately implies that, with high probability, there are exactly two
solutions of optimal Lagrangian cost. This will be crucial to prove that the running
time of bmst is polynomial in expectation.

The following lemma bounds the approximation guarantee and efficiency of algo-
rithm bmst.

Lemma 4.3. For any fixed ε ∈ (0, 1], the expected running time of algorithm bmst

is polynomial.
Proof. The perturbation can be performed in O(m log(2T 4)) = O(m2) time. Al-

gorithm bmst runs at most O((m log1+ε
cmax

cmin
)1/ε) instances of lagrangian, which is
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polynomial in the input size for any constant ε > 0. The running time of lagrangian
is dominated, modulo polynomial factors, by the number of spanning trees of optimal
Lagrangian cost for the considered instance. This number is at most T deterministi-
cally, and it is exactly 2 with probability at least (1− 1/T ) by Lemma 4.2. Hence the
expected running time of lagrangian is polynomial.

Lemma 4.4. For any fixed ε ∈ (0, 1], algorithm bmst is (1 + 5ε)-approximate.
Proof. The algorithm can only return feasible solutions. Let us assume that a

feasible solution exists, otherwise there is nothing to prove. Let OPT be the op-
timum solution to the perturbed instance, and F the 1/ε most expensive edges in
OPT . Consider the assignment g : F → {c1, . . . , cq} such that, for each e ∈ F ,
g(e) ≥ c(e) ≥ g(e)/(1 + ε). Let OPT ′ and OPT ′′ be the optimum solution to the
subproblems induced by j = (F, g(·)) and (F, c|F (·)), respectively. Observe that
c(OPT ′′) = c(OPT ) − c(F ). Moreover, c(OPT ′) ≤ c(OPT ′′) since mine∈F {c(e)} ≤
mine∈F {g(e)} (intuitively, for a given guess F we prune more edges with c(·) than
with g(·)). Altogether c(OPT ′) ≤ c(OPT ) − c(F ). Note also that in subproblem Pj

each edge e costs at most ε(1 + ε)c(OPT ). If λ∗ = 0, c(S−) = c(OPT ′). Otherwise

c(S−) = c(S+) + c(e−)− c(e+) ≤ LAG(λ∗) + c(e−)

≤ c(OPT ′) + c(e−)

≤ c(OPT ′) + ε(1 + ε)c(OPT ).

It follows that c(F ) + c(S−) ≤ c(OPT ) + ε(1 + ε)c(OPT ). It is easy to see that the
initial perturbation increases the cost of the optimal solution at most by a factor (1+ε)
(deterministically). Thus the overall approximation factor is (1 + ε)(1 + ε(1 + ε)) ≤
1 + 5ε.

It remains to prove that bmst is monotone. To that aim, we start by proving the
bitonicity of the subroutine lagrangian.

Lemma 4.5. Algorithm lagrangian is bitonic with respect to c(·).
Proof. By the concavity of LAG, if λ∗ = 0, then observe that λ̄∗ = 0 and the

solution returned in the original and modified problems is exactly the same, since
the line of minimum-slope output in the original problem (cf. Step L2), will have
minimum slope also in the modified instance. On the other hand, for λ∗ = +∞ no
solution is returned for the original problem. We note also that if cost and length
of f are unmodified then the algorithm returns the same solution in the original and
modified problems. In all these cases lagrangian is trivially bitonic. Hence assume
that 0 < λ∗ < +∞ and that f modifies either cost or length. We distinguish two
cases:
(i) Case f ∈ S−: We have to show that f ∈ S̄− and c̄(S̄−) ≤ c(S−). Note that

c̄λ∗(S−) is either equal to cλ∗(S−)−∆ < c̄λ∗(S−) or to cλ∗(S−)−λ∗∆ < c̄λ∗(S−), de-
pending on whether the cost or length of f is modified (decreased) by ∆, respectively.
For any S 6∋ f , c̄λ∗(S) = cλ∗(S) ≥ cλ∗(S−). (The last inequality follows from the
fact that point (λ∗, cλ∗(S−)) belongs to the lower envelope LAG and that the lower
envelope is defined as the point-wise minimum of all lines cλ(S) for all spanning trees
S.) Hence LAG intersects at λ∗ only solutions containing f in the modified problem:
since S− is one of those solutions, the concavity of LAG implies that λ̄∗ ≤ λ∗.

Suppose first λ̄∗ = λ∗. Note that in this case all the solutions intersecting LAG at
λ∗ contain f , and hence f ∈ S̄−. Moreover, those solutions are exactly the solutions
containing f which intersect LAG at the same value of the Lagrangian multiplier as in
the original problem. By construction S̄− is adjacent to a positive-slope solution S̄+
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intersecting LAG at λ∗. It follows that (S+
0 , S−

0 ) is a candidate pair for the original
problem as well, where lines (S+

0 , S−
0 ) correspond to lines (S̄+, S̄−) for the original

(unmodified) cost/length of f . The maximality of S− implies c(S−) ≥ c(S−
0 ) ≥

c(S̄−) ≥ c̄(S̄−).
Suppose now λ̄∗ < λ∗. Under this assumption, S+ 6∋ f , since otherwise we would

have λ̄∗ ≥ λ∗ by the same argument as before. This implies that the lower envelope
LAG6f of the lines not containing f intersects S+ at λ∗ (since LAG6f is sandwiched
between LAG and S+). It follows from the concavity of LAG6f that LAG6f is defined
only by positive-slope lines for λ < λ∗, and consequently the (non-positive-slope)
solution S̄− returned for the modified problem must contain f . Since S̄− intersects
LAG at λ̄∗ < λ∗ in the modified problem, the slope of S̄− is larger than the slope of
S− (in both problems), unless S− and S̄− correspond to the same spanning tree. In
the former case, we can conclude by Lemma 4.1, applied to the lower envelope LAGf

of the lines containing f in the modified problem, that c̄(S̄−) ≤ c̄(S−) ≤ c(S−). And
if S− and S̄− correspond to the same spanning tree, we have c̄(S̄−) = c̄(S−) ≤ c(S−).
(ii) Case f /∈ S−: If f ∈ S̄−, there is nothing to show. So assume f /∈ S̄−: we

have to show that c̄(S̄−) ≥ c(S−). For λ > λ∗, the solutions of non-positive slope
not containing f have Lagrangian cost larger than LAG(λ∗) ≥ LAG(λ∗) ≥ LAG(λ̄∗).
Therefore λ̄∗ ≥ λ∗. We can conclude by the same argument as in Case (i) that the
slope of S̄− is not larger than the slope of S−. Hence, by Lemma 4.1 applied to the
lower envelope LAG6f = LAG 6f of the lines not containing f , c̄(S̄−) = c(S̄−) ≥ c(S−).

Corollary 4.6. The procedure which returns Fj ∪ Sj for a given problem Pj is
bitonic with respect to c(·).

Proof. If f ∈ Fj , then Pj = P̄j and hence Sj = S̄j . In this case the procedure
is trivially bitonic. Otherwise (f /∈ Fj), suppose f ∈ Fj ∪ Sj (i.e., f ∈ Sj). By
Lemma 4.5, f ∈ S̄j and c̄(S̄j) ≤ c(Sj). It follows that c̄(Fj ∪ S̄j) = c(Fj) + c̄(S̄j) ≤
c(Fj)+ c(Sj) = c(Fj ∪Sj). It remains to consider the case f /∈ Fj ∪Sj . If f ∈ Fj ∪ S̄j

there is nothing to show. Hence assume f /∈ Fj∪S̄j , which implies f /∈ S̄j . By Lemma
4.5, c̄(S̄j) ≥ c(Sj) which implies c̄(Fj ∪ S̄j) ≥ c(Fj ∪ Sj).

Lemma 4.7. Algorithm bmst is monotone.
Proof. It is sufficient to consider the case that the solution returned in the original

problem is not N . Analogously to the proof of Lemma 3.3, we define a variant ideal
of bmst which considers all the powers of (1 + ε) for any guess. Also in this case the
solution computed by ideal and bmst is the same. In fact, when mine∈Fj

{gj(e)} <
cmin, all the edges are removed and the problem becomes unfeasible. Vice versa,
for mine∈Fj

{gj(e)} > cmax, no edge is discarded and one obtains exactly the same
subproblem by replacing each gj(e) > cmax with the largest power of (1+ε) not larger
than (1 + ε)cmax. Algorithm ideal is monotone by the Composition Theorem 2.4
and Corollary 4.6. It follows that bmst is monotone as well.

The randomized part of Theorem 1.2 follows from Lemmas 2.2, 4.3, 4.4, and 4.7.

4.3. Derandomization for Integer Lengths. We next show how to deran-
domize the algorithm from Section 4.1 under the assumption that lengths are positive
integers. W.l.o.g., we can assume that L ≥ 1 is integer. By the same argument as
before, we can assume that n is bounded from below by a sufficiently large constant.
The basic idea is to exploit sufficiently small additive deterministic perturbations of
the costs, so that an analogue of Lemma 4.2 holds. In order to guarantee that such
perturbations are small enough, yet independent from agents’ declarations, we round
the costs in order to make them integral.
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bmst’(P, ε)

B1: Remove all edges e with ℓ(e) > L.

B2: Let c1 ≤ . . . ≤ cq be the powers of (1+ ε) between cmin/(1+ ε) and n(1+ε)
ε

cmax.
Let 1, . . . , h denote all the pairs (F, g(·)) with F ⊆ E, |F | = 1

ε
, and g : F →

{c1, . . . , cq}. For a given pair j = (Fj , gj(·)), define subproblem Pj by: (i)
contracting the edges of Fj ; (ii) deleting all the edges of cost larger than Cj :=
mine∈Fj{gj(e)}; (iii) decreasing L by ℓ(Fj); (iv) replacing each cost c(e) with
⌈c(e) n

εCj
⌉+ δ(e). Compute Sj := lagrangian(Pj).

B3: Return the solution Fj ∪Sj , Sj 6= N , minimizing c(Fj) + c(Sj) and maximizing
j in case of ties (N if no such solution exists).

Fig. 4. Algorithm bmst’. Here δ(e) := 1
Mi(e) , i(e) ∈ {1, . . . , |E|} is the index of e, and M is a

sufficiently large function of ε, n and L.

In more detail, our deterministic variant bmst’ of bmst is described in Figure 4.
Initially edges with length larger than L, which do not belong to any feasible solution,
are filtered out. This guarantees that, for any ∅ 6= E′ ⊆ E, 1 ≤ ℓ(E′) ≤ (n−1)L < nL.

The construction of each problem Pj is analogous to the same construction in
bmst, with the following differences. First of all, we update costs in a drastically
different way. We initially replace each c(e) with the rounded cost ⌈c(e) n

εCj
⌉, where

Cj := mine∈Fj
{gj(e)} is an upper bound on edge costs after Steps (i) and (ii). Observe

that, after this rounding, edge costs are integers between 1 and n/ε. Then we add
to each cost c(e) the positive perturbation δ(e) := 1

Mi(e) . Here i(e) ∈ {1, . . . , |E|}
denotes the position of edge e in an arbitrary, deterministic ordering of the edges of
the graph. Furthermore, M denotes a sufficiently large function of n and L, to be
fixed later. The second, technical difference is that we expand the set of candidates
costs ci w.r.t. the randomized variant: intuitively, we want to span all the values of
Cj which induce distinct values of the rounded costs (before the perturbation). We
remark that the (deterministic) procedure lagrangian is the same as in bmst.

Trivially, the overall algorithm is deterministic. Let us next prove that it has also
the other desired properties. We first prove the following technical lemma about the
properties of the perturbations. For a subset of edges F , let δ(F ) :=

∑

e∈F δ(e). We
also let c′(F ) be the modified cost of F and cr(F ) = c′(F ) − δ(F ) be the rounded
(integral) cost of F before the perturbation.

Lemma 4.8. For any two distinct subsets of edges F ′ and F ′′, let f ∈ (F ′ \F ′′)∪
(F ′′ \ F ′) be the edge maximizing δ(f) (i.e., with the smallest index i(f)). Then

M − 2

M − 1
δ(f) < |δ(F ′)− δ(F ′′)| <

M

M − 1
δ(f).

Proof. Observe that |δ(F ′) − δ(F ′′)| = |δ(F ′ \ F ′′) − δ(F ′′ \ F ′)|. Let Ff :=
F ′ ∪ F ′′ − {f}.Trivially,

δ(f)− δ(Ff ) ≤ |δ(F
′)− δ(F ′′)| ≤ δ(f) + δ(Ff ).

The claim follows since δ(Ff ) =
∑

e∈Ff

1
Mi(e) < δ(f)

∑

i≥1
1

Mi = δ(f) 1
M−1 .

Lemma 4.9. For any problem Pj, all the spanning trees correspond to different
lines, and at most two lines intersect at a given value of λ′ ≥ 0.
Proof. Consider any two distinct spanning trees with edge sets E1 and E2. Assume
by contradiction that the corresponding lines overlap, and hence c′(E1) = c′(E2).
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Then |cr(E1) − cr(E2)| = |δ(E2) − δ(E1)|. The latter equality cannot hold since the
left-hand side is either 0 or at least 1, while the right-hand side is strictly between 0
and 1 by Lemma 4.8 (assuming M > 2).

Consider now any 3 distinct spanning trees, with edge sets E1, E2, and E3,
respectively. Define c′i := c′(Ei), for i = 1, 2, 3, and define similarly cri , δi, and ℓi.
Assume by contradiction that the corresponding lines intersect at a given value of
λ′ > 0. These lines do not overlap by the above argument, and cannot be parallel
since they intersect in λ′. Then c′1 6= c′2 6= c′3 6= c1. W.l.o.g. assume c′2 < c′1 < c′3.
Analogously to the proof of Lemma 4.2, one must have λ′ = ℓ1−ℓ3

ℓ2−ℓ1
> 0 and

c′3 − c′1 = λ′(c′1 − c′2)⇒ |(c
r
3 − cr1)− λ′(cr1 − cr2)| = |λ

′(δ1 − δ2) + δ1 − δ3|.

Observe that 1
nL < λ′ < nL by the integrality of the lengths, and recall that the

rounded costs cri are integers between 1 and n/ε. Consequently |(cr3−cr1)−λ′(cr1−cr2)|
is either 0 or at least 1

nL . We next prove that, for a large enough M ,

0 < |λ′(δ1 − δ2) + δ1 − δ3| <
1

nL
,

which gives the desired contradiction. For the upper bound part, let f ′ ∈ (E1 \
E2) ∪ (E2 \ E1) be the edge maximizing δ(f ′). Define f ′′ analogously w.r.t. edges in
(E1 \ E3) ∪ (E3 \ E1). By Lemma 4.8, assuming M > nL(nL+ 1) + 1, one obtains

|λ′(δ1 − δ2) + δ1 − δ3| ≤ |λ
′(δ1 − δ2)|+ |δ1 − δ3| ≤ nL

M

M − 1
δ(f ′) +

M

M − 1
δ(f ′′)

≤
nL+ 1

M − 1
<

1

nL
.

For the lower bound part, assume by contradiction that

λ′(δ1 − δ2) + δ1 − δ3 = 0⇔ λ′ =
δ3 − δ1
δ1 − δ2

.

Since λ′ > 0, it must be the case that δ3 > δ1 > δ2 or δ2 > δ1 > δ3. Consider the first
case, the second one being symmetric. By Lemma 4.8, with M > 2,

δ3 − δ1
δ1 − δ2

=
|δ3 − δ1|

|δ1 − δ2|
≥

(

M − 2

M − 1
δ(f ′′)

)

·

(

M

M − 1
δ(f ′)

)−1

=
M − 2

M
·
δ(f ′′)

δ(f ′)
> 0.

From the previous proof, choosing M = Θ((nL)2) is sufficient. Therefore pertur-
bations can be encoded with a polynomial number of bits in the input size.

Lemma 4.10. For any fixed ε ∈ (0, 1], algorithm bmst’ runs in polynomial time.
Proof. The proof follows along the same line as the proof of Lemma 4.3, the main

difference being that in this case, in each execution of lagrangian, the number of
trees of optimal Lagrangian cost is at most 2 deterministically due to Lemma 4.9.
Thus each such execution, hence the overall algorithm, takes polynomial time. Here
we also exploit the fact that O(log(M i(e))) is polynomially bounded.

Lemma 4.11. For any ε ∈ (0, 1], algorithm bmst’ returns a (1+8ε)-approximate
solution.

Proof. If there is no feasible solution, there is nothing to prove. Otherwise, let
OPT be the optimum solution, and F the 1/εmost costly edges in OPT . Consider the
assignment g : F → {c1, . . . , cq} such that, for each e ∈ F , g(e) ≥ c(e) ≥ g(e)/(1+ ε),
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and the subproblem Pj induced by j = (F, g(·)). Let OPT ′ be the optimum solution
to Pj , and OPTc be the optimum solution to the same problem where one uses the
original costs c(·) rather than the modified ones c′(·). By the same argument as in
the proof of Lemma 4.4, c(OPTc) ≤ c(OPT )− c(F ). Furthermore, for M ≥ n+1

n ,

c′(OPT ′) ≤ c′(OPTc) ≤
n

εCj
c(OPTc) + (n− 1) +

∑

i≥1

1

M i
≤

n

εCj
c(OPTc) + 2n.

By the same argument as in the proof of Lemma 4.4, Algorithm lagrangian returns
a solution S− such that c′(S−) ≤ c′(OPT ′) + c′(e−) ≤ c′(OPT ′) + n

ε + 1
M . Since

c(S−) ≤ εCj

n c′(S−), we can conclude that

c(S−) ≤
εCj

n
c′(S−) ≤

εCj

n
(c′(OPT ′) +

n

ε
+

1

M
)

≤
εCj

n
(

n

εCj
c(OPTc) +

4n

ε
) ≤ c(OPT )− c(F ) + 4Cj .

The cost of the returned solution is therefore at most c(F ) + c(S−) ≤ c(OPT ) +
4Cj ≤ (1 + 8ε)c(OPT ), where we used the fact that Cj ≤ εg(F ) ≤ (1 + ε)εc(F ) ≤
(1 + ε)εc(OPT ) ≤ 2εc(OPT ).

Lemma 4.12. Algorithm bmst’ is monotone.
Proof. We start by observing that the initial filtering Step B1 preserves the

monotonicity of the rest of the algorithm: indeed, if f belongs to the final solution
this means that ℓ(f) ≤ L and consequently f is not filtered out in the modified
problem where by assumption ℓ(f) ≤ ℓ(f). If is sufficient to consider the case that
the solution returned in the original problem is not N .

Lemma 4.5 holds unchanged. Consider any edge f with c(f) 6= c(f), that is
present in problems Pj and Pj . Let c′(f) and c′(f) be the modified cost of f in the
two problems. Then either c′(f) = c′(f) or the sign of c(f)−c(f) and c′(f)−c′(f) is the
same. We can therefore conclude along the same lines as in the proof of Corollary 4.6
that the analogue of that corollary still holds: namely, the procedure which returns
Fj ∪ Sj for a given problem Pj is bitonic w.r.t. c(·). Analogously to the proof of
Lemma 3.3, we define a variant ideal of bmst’ which considers all the powers of
(1 + ε) for any guess. Also in this case the solution computed by ideal and bmst’ is
the same. In fact, when Cj := mine∈Fj

{gj(e)} < cmin, all the edges are removed and
the problem becomes unfeasible. Vice versa, for Cj ≥

n
ε cmax, all the edge costs, before

the perturbation, are rounded to 1. Hence, by rounding each gj(e) >
n
ε cmax down to

the largest power of (1 + ε) which is not larger than (1+ε)n
ε cmax, one obtains exactly

the same solution: the modified assignment is considered by the original algorithm in
some subproblem j′. Algorithm ideal is monotone by the Composition Theorem 2.4
and by the modified version of Corollary 4.6. It follows that bmst’ is monotone as
well.

Combining Lemmas 2.2, 4.10,4.11, and 4.12, one obtains the deterministic part
of Theorem 1.2.

5. PTAS for Independence Systems. In this section we consider the case
that feasible solutions induce an independence system. Recall that in these problems
removing any element from a feasible solution preserves feasibility. In particular,
this means that S is closed under inclusion, i.e., S ∈ S implies S′ ∈ S for any
S′ ⊆ S. Moreover, it must be �i=≤ for all i ≥ 1. The case best = min is trivial for
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ismulti(P, ε)

M1: Let c1 ≤ . . . ≤ cp be the powers of (1+ε) between ℓ0,min/(1+ε) and ℓ0,max(1+
ε). Let B0,1 ≥ . . . ≥ B0,q be the powers of (1 + ε) between ℓ0,min

1
m(1+ε)

and mℓ0,max⌈
m(1+ε)

ε
⌉. Let 1, . . . , h denote all the triples (F, g(·), B0,r) with

F ⊆ U , |F | ≤ k
ε
, g : F → {c1, . . . , cp} and 1 ≤ r ≤ q. For a given triple

j = (Fj , gj(·), B0,rj ), define subproblem Pj by: (i) selecting the elements of Fj ;
(ii) removing all the elements e not in Fj with ℓ0(e) > mine′∈Fj

{ℓ0(e
′)} (all

the edges if |F | < k
ε
); (iii) decreasing Bi by ℓi(Fj) =

∑
e∈Fj

ℓi(e) for i ≥ 1.

Compute (Sj , ℓ0,j) = isfeasible(Pj , ε, B0,rj ).

M2: Return the solution Fj ∪ Sj , Sj 6= N , maximizing ℓ0(Fj) + ℓ0,j(Sj), and maxi-
mizing j in case of ties (∅ if no such solution exists).

isfeasible(P, ε, B0)

F1: Let B′
0=⌈m

ε
⌉ and I0={B′

0, B
′
0 + 1, . . . ,mB′

0}. For all e ∈ U , replace ℓ0(e) with

min{ℓ0(e), B0} and define ℓ′0(e) = ⌊
B′

0
B0

ℓ0(e)⌋.

F2: For i = 1, . . . , k, let B′
i = m2 and Ii={0, 1, . . . , B′

i}. Discard all the elements

with ℓi(e) > Bi, and define ℓ′i(e) = ⌈
B′

i

Bi
ℓi(e)⌉ for the remaining elements.

F3: Let M = m maxi≥0{B
′
i} + 1 and ϕ(·) =

∑k

i=0 M
iℓ′i(·). For all z =

(z0, z1, . . . , zk) ∈ ×k
i=0Ii:

• Let Bz =
∑k

i=0 M
izi. Use A to compute a solution Sz ∈ S with ϕ(Sz) =

Bz. (The solution with the largest incidence vector in lexicographic sense
in case of ties). If no feasible solution exists, Sz = N .

F4: Let S∗
z 6= N be the solution Sz with lexicographically best z (S∗

z = N if no such
solution exists). Return (S∗

z ,
B0
B′

0
ℓ′0(·)).

Fig. 5. Algorithm ismulti.

these problems, since the optimum solution is the empty one. Hence we also assume
best = max. Altogether, these problems can be formulated as

max
∑

e∈U

ℓ0(e)xe

s.t. x ∈ X
∑

e∈U

ℓi(e)xe ≤ Bi for i = 1, . . . , k.

Also in this case we focus on the case that the exact version of the problem
admits a deterministic pseudo-polynomial-time algorithm A: the randomized case is
analogous. We make the same assumptions as in Section 3. Furthermore, we implicitly
assume that we can select an element e in the sense described in the introduction.

Our algorithm ismulti is described in Figure 5. The basic idea is to combine
the approach of multi with the novel guessing technique of bmst. The algorithm
generates (Step M1) a polynomial set of subproblems P1,P2, . . . ,Ph. Intuitively,
each subproblem corresponds to a guess of the most expensive edges in the optimum
solution OPT and to a guess of their approximate cost. Moreover, as in multi, in
each subproblem we also set up a lower bound on the cost of the desired solution.

More precisely, each subproblem Pj is labeled by a triple (Fj , gj(·), B0,rj ). In this
subproblem the elements of Fj are selected, and each budget Bi, i ≥ 1, is decreased
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by ℓi(Fj). Function gj(·) assigns a rounded cost to the elements of Fj similarly to
bmst. All the elements of cost larger than mine∈Fj

{ℓ0(e)} not in Fj are discarded.
Each subproblem Pj is solved by means of a procedure isfeasible, inspired by
feasible. The unique difference is that the modified lengths ℓ′i(e), for i ≥ 1, are

equal to ⌈ ℓi(e)Bi
B′

i⌉, where B′
i = m2. Procedure isfeasible returns a solution Sj and

a cost function ℓ0,j(·). This procedure is designed in order to be bitonic with respect
to ℓ0,j(·) on subproblem Pj .

Eventually ismulti returns the (feasible) solution Sj that maximizes ℓ0(Fj) +
ℓ0,j(Sj), the best solution with largest index j in case of ties (Step M2).

Lemma 5.1. For any fixed ε ∈ (0, 1], ismulti runs in polynomial time and it
returns a feasible solution which is 1

(1+ε)4 -approximate.

Proof. The number of subproblems generated by ismulti is O(mk/ε(log21+ε
mℓ0,max

εℓ0,min
)),

which is polynomial being k constant. Similarly to Algorithm multi, we notice that
isfeasible takes time O((m/ε)O(1)), thus implying that the algorithm takes poly-
nomial time overall.

Assume that OPT contains at least k/ε elements, the remaining case being sim-
pler. Let Fj be the k/ε most expensive elements in OPT , and OPT ′ = OPT \Fj . Let
us restrict our attention to the triples of kind (Fj , gj(·), B0,rj ), where gj(e) ≤ ℓ0(e) ≤
(1 + ε)gj(e) for all e ∈ Fj . We denote by ei the element of largest length ℓi in OPT ′,
i ≥ 1. We next show that ℓ′i(OPT ′\{ei}) ≤ B′

i. Let |OPT ′| denote the number of ele-

ments in OPT ′. Observe that ℓi(OPT ′ \ {ei}) ≤
|OPT ′|−1
|OPT ′| ℓi(OPT ′) ≤ m−1

m ℓi(OPT ′).

Then

ℓ′i(OPT ′ \ {ei}) =
∑

e∈OPT ′\{ei}

ℓ′i(e) ≤ |OPT ′| − 1 +
∑

e∈OPT ′\{ei}

ℓi(e)

Bi
B′

i

≤m− 1 +
m− 1

m

ℓi(OPT ′)

Bi
B′

i ≤ m+
m− 1

m
B′

i = B′
i.

As a consequence OPT ′′ := OPT ′ \{e1, . . . , ek} satisfies ℓ
′
i(OPT ′′) ≤ B′

i for all i ≥ 1.
Since the largest cost in the problems considered is at most mine∈Fj

{ℓ0(e)}, we have
that ℓ0(OPT ′′) ≥ ℓ0(OPT ′) − kmine∈Fj

{ℓ0(e)}. By the usual argument, OPT ′′ is a
feasible solution to the rounded problem P ′

j associated to the triple (Fj , gj(·), B0,rj ),

with B0,rj (1 + ε) ≤ ℓ0(OPT ′) − kmine∈Fj
{ℓ0(e)} < B0,rj (1 + ε)2. Hence a solution

Sj is returned for that problem. For this solution we have ℓ′0(Sj) ≥ B′
0 which implies

ℓ0(Sj) ≥ B0,rj . We then have

ℓ0(Sj ∪ Fj) =ℓ0(OPT )− ℓ0(OPT ′) + ℓ0(Sj)

≥ℓ0(OPT )− ℓ0(OPT ′) +B0,rj

≥ℓ0(OPT )− ℓ0(OPT ′) +
1

(1 + ε)2
(ℓ0(OPT ′)− k min

e∈Fj

{ℓ0(e)})

≥ℓ0(OPT )− ℓ0(OPT ′) +
1

(1 + ε)2
(ℓ0(OPT ′)− ε (ℓ0(OPT )− ℓ0(OPT ′)))

=(1−
ε

(1 + ε)2
)ℓ0(OPT )− (1−

1

(1 + ε)2
−

ε

(1 + ε)2
)ℓ0(OPT ′)

≥(1−
ε

(1 + ε)2
)ℓ0(OPT )− (1−

1

(1 + ε)2
−

ε

(1 + ε)2
)ℓ0(OPT )

≥
1

(1 + ε)2
ℓ0(OPT ).



Utilitarian Mechanism Design for Multi-Objective Optimization 27

Let Sd ∪ Fd be the solution returned by the algorithm. Similarly to the proof of
Lemma 3.1, we can observe that ℓ0,j(Sj) ≥ ℓ0(Sj)/(1 + ε)2. We can conclude that

ℓ0(Sd ∪ Fd) ≥ ℓ0(Fd) + ℓ0,d(Sd) ≥ ℓ0(Fj) + ℓ0,j(Sj)

≥
1

(1 + ε)2
ℓ0(Fj ∪ Sj) ≥

1

(1 + ε)4
ℓ0(OPT ).

Lemma 5.2. Algorithm ismulti is monotone.
Proof. It is sufficient to consider the case that the solution to the original problem

is not ∅. By an argument analogous to the proof of Lemma 3.2, isfeasible is bitonic
on problem Pj with respect to the cost function ℓ0,j(·). By the same argument as in
Corollary 4.6, the procedure which returns Fj ∪ Sj for a given problem Pj is bitonic
with respect to the cost function used in step M2 of ismulti. Analogously to the
proof of Lemmas 3.3 and 4.7, we define a variant ideal of ismulti which considers all
the powers of (1+ ε) for any guess. Also in this case it is easy to see that the solution
computed by ideal and ismulti is the same. By the Composition Theorem 2.4 and
the bitonicity of the procedure above, we can conclude that ideal is monotone. It
follows that ismulti is monotone as well.

Theorem 1.3 follows from Lemmas 2.2, 5.1, and 5.2. The randomized part of
Theorem 1.3 follows along the same line as in the case of multi.
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