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Abstract

A general multi-resource queueing system is defined to be a single

congestion point associated with a number of different resource types

and having arrivals which require some combination of the system resources

simultaneously for the duration of their processing times. Such a system

is characterized by a variable processing rate which is a function of the

combination of Jobs being concurrently serviced at any Instant. The

capacity bound for a multi-resource queue is the smallest Input rate which

is guaranteed to cause saturation regardless of the scheduling rule

employed, give some fixed set of job stream characteristIcs.
. I

This paper examines the performanc~ of a simple example of a multl-

resource queue, a two CPU system with two memory partitions. There

are two classes of Poisson arrivals, and each Job class has independent

and exponentially distributed service times. Resource requirements are

such that Cla55-1 Jobs need one CPU and one block of memory. while Class-2

jobs require a single CPU and both memory blocks In order to be executed.

An algorithm for calculating the capacity bound is given which enables

one to determine" the "op tlmaJlI proportion of time that the system should

spend in processing various job combinations. Seven scheduling rules

are described in terms of the manner in which preference is given to

different Job combinations, and the notion of assigning priorities to

combinations of jobs is stressed. The paper then gives an overview of the

relative system performance under these rules by comparIng the system

capacity and average flow times for these disciplines. Finally, a sample

derivation is provided for one of the scheduling rules In order to

j Ilustrate a powerful analytic technique used by the authors to obtaIn
many of the described results.
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Queueing Theory can provide valuable Insights Into various aspects

of computer system performance, but existing computer systems exhibit,
forms of resource allocation which are no~ accurately represented by the

queueing models analyzed to date. An examination of the literature,
leads to the conclusion that previously analyzed models have two common

features: (I) each queue is associated with either a single ,resource

or a number of Identical resources, and (II) arriving Jobs require

exactly one unit of the scarce resource. This conclusion Is valid for

a vast majority of the mOdels Including queues with feedback, networks

of queues, and multlple~server queues.

The theses by the authors [1,2] have Independently attacked a

class of queueing problems Involving a form of resource allocation not

previously treated In the literature. In order to better defIne this

class of problems, the term multi-resource queue Is Introduced to describe

the situation In whIch a congestion point Is associated with a number of

resources and where job arrivals require the simultaneous use of some

combination of the system resources. Computer, systems provide strong

motivation for examinlng'muiti-resource queues because a job or process

must generally be allocated both a processor and primary memory In order

for execution to take place. The notion of a multi-resource queue may

also be seen in a simulation language such as GPSS £3] where users may

define storage entities to handle discrete resources for which the

allocation quantity may be several units. This paper presents results

for an example of a multi-resource queue which, while, simple In certain

respects, nevertheless exhibits a number of Interesting properties

which are quite different from those for the usual case of a queueing

system InvolvIng a single resource type.

Notation & Terminology for a General Multi-Resource Queue

A general multi-resource queue Is a system consisting of several

different resource types and an arbitrary number of units of each resource

type. Each job arriving to the system requires a combination of the

system resources simultaneously for the duration of the processing tIme

of the job. The arriving Jobs fall Into'varlous classes, and each Job
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class is characterized by an arrival process, a processing time dIstribut­

Ion, and a fixed resource request which describes the resource require­

ments of each Job within the class. This Implies that each job within

the same class has Identical. resource requirements; however, this fixed

resource request may Instead be Interpreted to be the maximum resource

requirements for Jobs within a given class. In this latter case, the

deadlock prevention technique proposed by Habermann [4] might be employed;

dynamic resource allocation could take place, but deadlock would be pre­

vented by never simultaneously processing a set of Jobs for which the total

of the maximum resource requirements wouJd exceed the available system

respurces. There wIll be a queue for Jobs waiting for service, and this

queue will be taken to be Infinite tn length unless specifIed otherwise.
Define:

I ,. Number of Resource Types (I ~ I).

R.- Amount of the Ith Resource In System. I • I •.. ~.i.I

J • Number of Job Classes .

.Jobs belonging to Class-J, where J. 1••..•J. have the.
followJng characterlstrcs:

YJ ... (rJprJ2,···.rJI) .. Resource Request Vector for

the Jth Job Class IndJcatfng that" rJ~ units of

~esourc~ Type I are requlred._ r
J2

unIts of

Resource Type 2, etc. Furthermore~ a ~ r Ji ~ R
I

and.rJI > a for at least one I.

AJ • ArrIval Rate for Class-J Jobs (hence, I/A
J

...
mean interarrlval tIme for Class-J Jobs).,

1/~J = Expected Processfng T1me for Class-J Jobs.

The total input rate A for Jobs of all classes 15 defined to be
J

A • E A
J

.
Jo'

The pro~ortlon of jobs In the overall Input stream which belong to Class-j
will be denoted by f j and ,defined as

f J 01./1., where I ~ J ~ J.

Given the basic characteristIcs of a multi-resource queue. It '5 now

possible to Introduce additional termInology which I~,useful for describing

queueing systems of this type. For a multi-resource queue, It Is possIble

to have several Job~ simultaneously being processed by the system. subject to
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for 1·1.2"'0,1.< R
I

the restrictIon that the total of the resources required by the combination

of Jobs Is less than or equal to the available resources In the system.
Define:

[nkl '"k2,o;""kJ] • Job CombInation k consIsting of "kl Jobs

of Class-l, "k2 Jobs of Cla55-2, etc.
A feasible Job combination k Is one having the. following

property:

J
I: n *r

J-l kJ JI

A multi-resource queueIng system wIlT be said to be saturated when
•the expected flow time for one or more Job classes Is Infinite.

The capacity of a multi-resource queueing system under a scheduling

rule Is defined as follows. The characteristics of the Job stream will

be fixed In a manner to be next described. Assume a stationary dlstrl-, .

but Ion for the ~roce5sing times associated with each job class. and take

the proportion of Class-j Jobs in the overall Input stream, f
l

, to be

fixed at an arbitrary value which" Is subject to the following restrictions:
Jo .::. f J .::. I. and E f

J
~ I.

J=1
Given that the type of arrival process for each job class also remains

constant, we will say that the job stream characteristIcs are fixed and

that the only parameter which can vary Is the overall ,input rate. Under

these circumstances. the capacity of the system under a specified

scheduling discipline Is defined to be the smallest overall input rate

at which the system becomes saturated.

A capacity bound, when it exists for a multi-resource queue, will

be defined to be ~ -Infimum of the overall Input rates at which themax
system Is guaranteed to saturate regardless of the discIpline which is

used, given that the job stream characteristics are fixed as described

previously. The capacity bound for a multI-resource queue Is useful for

measuring the performance of varIous scheduling dIsciplines because, given

some fixed job stream characteristics. the capacity under a particular

schedu 11 n9 ru Ie may be Iess than the capac Ity bound. If the capac I ty unde r

a certain scheduling discipline Is equal to the capacity bound for every

set of job stream characteristics, the scheduling rule Is said to be a full­

capacity discipline for the multi-resource queueing system.
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The multi-resource queueing system wIll In general have a variable

processIng rate which Is a function of both the number and type of Jobs In

service. The feasIble Job combInations are obviously Important In this

respect because the processing rate depends directly on the manner In which

Jobs are concurrently processed. Scheduling rules for multi-resource queues

will greatly Influence the processing rate through the choice of Job

combination to be proces~ed at any Instant. The capaclty bound Is a useful

quantity because It specifies the smallest Input rate which saturates the. . .

system regardless of the manner In which the scheduling rule operates; this

capacity bound Is therefore related to the maximum expected processing

rate that can be achieved by the system when given a specified set of job,
. .

stream characteristIcs.

This paper will be concerned wIth multi-resource queues for which

work-conserving discIplines are employed. where the term I~ork-conservingll

refers to situatIons In which there Is no wasted processIng tfme such as

occurs with swltchover times or with preemptIve-repeat priorIty disciplines.

For the classical sIngle-server queue, work-conservIng dlsclpl'nes.are full­

capacity disciplInes. In contrast. a dIscipline for a multi-resource queue

may be work-conservIng without being able to achieve full-capacIty.

Two CPU System With Two Units of Memory

A multi-resource queueing system which will be examined under a variety

of different scheduling disciplines will now be descrIbed. The system will

consist of two resource types which will be Interpreted to be Central

Processing Units (CPUs) and blocks of primary memory.- There are two CPUs

(Resource Type-1), and the primary memory has been partitioned Into two

blocks (Resource Type-2). There are two Job classes; Class-I jobs require

on~ CPU and one block of memory. whIle Class-2 jobs require one CPU and two,
blocks of primary memory. Class-I and Class-2 jobs arrive In a Poisson,
stream at rates Al and A2, respectIvely. The processing times for Class-I

jobs have a negative exponential distribution, and those for Class-2 Jobs

are also exponentially distributed. UsIng notatIon Introduced for

the general modeJ, the system may be described 85 follows:

R] • 2 (~umber of CPUs).

R2 • 2 (Number of blocks of primary memory).
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Class-I Jobs:

AJ • PoIsson Arrival Rate for Class-J Jobs.

PJ • Random Variable denoting a Class-) Processing Time which has a
negative exponential distribution.

E(P 1) • Expected Class-l Processing TIme,
• I /~ I . .

VI a (1,1) ~ Resource Request Vector for Class-l Jobs Indicating
that one CPU and one block of primary memory are requJred.

F,-" Random Variable representing a Class-J Flow Time (i.e. the Inter­
val between the arrfval of a Job and the completion of 5~rvlce
for that Job).

Class-2 Jobs:

AZ ~ Poisson Arrival Rate for Class-2 Jobs

P2 • Random VarIable denoting a Class-2 Processing Time having a
negative exponential distributIon.

E(P2) m Expected Class-2 Processing Time,

• 1/~2'

V2 • (1,2) • Resource Request Vector for Class-2 Jobs Indicating
that one CPU and two blocks of memory are needed.

FZ • Random Variable used to represent a Class-Z Flow TIme.

For any multI-resource queue, the feasible Job combinations specify the

varIous ways in which combinations of jobs may be simultaneously processed.

The resource requirements of the two job classes give the following feasible
combin~tlons for thIs system:

CI • [l,O] One Class-I Job

C2 • [0,1] One Class-2 Job

C3 • [2,0] Two Class-I Jobs

Information concerning the resource requIrements of the Job classes Is not

needed to analyze the described system If the feasIble job combinations are

known. It might be pointed out that the same combinations mIght result for

another multi-resource queueing system with dIfferent resources and changed

resource requirements for the job classes; for example, a two-resource

system with two job classes would have the same set of feasible job .

combInations for the case In which RI • Z, R
Z

• 5, VI • (1,2), and V
z

D (I,q).

This stresses the Importance of the feasIble job combinations In describing

·the system and Implies that results of analyzing the ~wo-CPU System With Two

Units of Memory will be applIcable to other multI-resource queueIng system
with similar sets of feasible combfnatlons.

The capacity bound A has been previously defined as the infimum of- max
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the overall Input rates at which the system Is guaranteed to saturate

regardless of the scheduling rule whIch Is employed, given that the job

stream characteristics are held constant. This capacity bound A will
. max

be a function of the valid job combinatIons, the relative input rates, and

the processing time requirements for the two Job classes. The following

notation will be required in the material which fo1.1ows:,
A • A] + A2 ~ Overall Poisson Arrival Rate for Jobs

f, • AlIA = Proportion of jobs which belong to Class-T.

f 2 • A2/A • Proportion of Jobs which belong to Class-2.

If the job stream characteristics are held constant for this system (i.e .•

f l , f 2• E(P,), and E{P2) held constant). the capacity bound A
max

for the

Two CPU System With Two Units of Memory Is given by

Amax • 1/lfIE(P1)/2 + f
2

E(P
2
)]· (I)

PROOF. Let the following functIons represent the steady-state

probabilities that the system is In a specified state, given that the

system is operating under an arbitrary scheduling rUle and that the system
is nonsaturated at Input rate A:

'0 (A) • Prlsystem idle],

'1 (A) ~ PrlJob combination [ 1,0]' 1" progress] ,

'2(A) • Pr[job combination [0, I] In progress] ,

'3(A) ~ Pr[job COMbination [2,0] in progress] .

Assuming that there Is zero overhead, all system states have been intro­

duced, and It must be the case that

> o.

The amount of work which arrives to the system per unIt of time for each

of the two classes Is

~fIE(Pl) a Expected amount of processing time requested by Class-l

jobs per unit of time,

Af2E(P2) - Expected amount of processIng t.lme requested by Cla.s5-2

jobs per unit of time.
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The steady-state probabilities may be related to the amount of work arriv­

ing per unit of time by applyi.,ng little's Equation [5] to the processor

system; this gives the following relation:

[Expected no. of jobs in pr.ogress]

=[Arrlval Rate for jobs] . [Expected time in processor].

Using the above result, the following equations are obtained for Class-J

and Class-2 jobs, respectively:

[',(A) + 2'3(A)] • [H1][E(P,)1.

['2(A)] • [Af
2

][E(P
2
)]·

The sum of the probabilities that a valid Job combination Is in progress

may be made arbitrarily large by increasing the input rate ~. and the

system capacity

such that
). . under the Jth discipline will be that input ratemaxJ

Jimi t
AtA •

maxJ

',(A) = I and limit
AH .maxJ

The capacity bound ).
max

guaranteed to saturate,

Li near Program:

is the smallest input rate at which the system is

and the bound can be found by solving the following
,

Amax "" Max
A"I(A)"2(A)"3(A)

and

The soJutlon for all f l and f2 15 found by InspectIon to require­

uI(A) = 0, and therefore for A=Amax
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~ I,

which implies that

Q.E.D.

In obtafning this result, it was not necessary to take Into account the

distribution types for the arrival process and processing times. The bound

is val id for arbitrary distributions and depends primarily on the val id Job

combinations for the system.

The above derivation Illustrated that the capacJty bound may be

calcul~ted as the solution of a Linear Program, and the solution gives

insights into the manner In which jobs should be simultaneously processed

in order to achieve full-capacity. Consider the proportion of time that

should be spent in processing the various job combinations as the input

rate approaches the capacity boundj the derivation gave the following values:

lim "I (A) ~ D,
AHmax

11m "2(A) ~ A f 2E(P2)'
AH max

max
• A f

I
E(P

1
)/2.max

The above values will be referred to as the solution set of state probabilities

for the Linear Program. These values suggest that the system should spend

all of its time in processing either a single Class-2 Job or a pair of

Class-I Jobs in order to achieve the capacity bound~ A single Class-! job

may be considered to be an l'undesirable" job combination because It Is

assigned a probability of zero In the solution to the Linear Program and

therefore should be avoided if system capacity is of prime importance.

References [I] and [2] independently analyzed a number of scheduling

rules for the Two CPU System With Two Units of Memory. This paper is

intended to be an overview which places the performance of various scheduling

disciplines Into perspective and which gIves the reader insights into the

behavior of multi-resource queueing systems.
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Before describi.ng various scheduli,ng rules for thIs multi-resource

queueing sys.tem, it is us.eful to Introduc;.e 'the ,not ion of assigning priorities

to combinations of jobs. In a sIngle-resource system, priority disciplines

will generally assign priorities to different classes of jobs; this situ­

ation may be regarded as an assIgnment of priorities to job combinations

for the special case where the set of job combinations is identical to the

set of different job classes (I.e., there is at most one Job in service

at any ins tant) . The rou 1t i-resource queue i"g system Is 'eha rae tar i zed by
variable service rate which is a function of the job combinations In,
service (i.e., the degree of simultaneous processing is determined by the

number of jobs in the combination). The performance of a multi-resource

queueing system will be greatly influenced by the way in which the scheduling

rule chooses the combination of Jobs to be service~ at any instant, and

the concept of priorities for job combinatIons follows in a natural way.

There are three feasible Job combinations for the Two-CPU System With

Two Units "of Memory, and there are six possIble priority orderings that

could be assigned to these Job combinations (assuming the priorities are,
to be different). If we consIder these combinations, though, It Is obvious

that it makes little sense to give higher priority to a single Class-I job

than to a pair of Class-I Jobs, and priority orderings givIng preference

to a single C1ass-l job over a paIr"of Class-I Jobs should be removed from

consideration. Below are the three remaining priority orderings that could

be given to the job combinations (top-to-bottom corresponds with highest­

to-lowest priority):

C
3

= [2,0] Two C1ass-l Jobs

C1 = [1 ,0] One C1ass-l Job

C2 = [O,1l One Class-2 Job

C
3

= [2,0] Two Class-I Jobs

C
2

• [0,1] One Class-2 Job

C
1

• [ I ,0] One Class-l Job

Class-I Static Priority

Class-I Conditional PrIority
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C = [O,1l One Class-2 Job2

C
3 - [2,0] Two elass-l Jobs

C, - [1,0] One Class-I Job

Class-2 Static Priority

When describing a priority scheduling rule for this system, one will be,
interested in not only the priority ordering for Job combinations but also

, ,
in whether a job combination has preemptive or nonpreemptive priority over

some other job combination. The following notation will be used to further

describe the scheduling rule:

denotes that Job combination C, has nonpreemptive priority
over Job combination C

J
denotes that job combination C1 has preemptive priority
over Job combination C

J

Using thIs notation, a scheduling rule which assigns priorities to job com­

binations can be descrIbed Tn terms of the painw'lse priority relationships

that exist between each distinct pair of Job combinations.

The authors have analyzed the followIng disciplines for the Two CPU

System With Two Units of Memory; in each case It Is assumed that there is

no overhead Involved In swItching between Job combinations.

(1) Flrst-Come-Flrst-Served (FCFS) DIscipline:

Jobs go into service according to order of arrival whenever

there are sufficient resources available.

(2) Nonpreemptive Class-l Static Priority Discipline: C
3

> C2, C1 > C2

Class-I Jobs have nonpreemptive priority over Class-2 jobs,

and a Class-2 job is processed to completIon upon going into

service.

(3) PreemptIve Class-l Static Priority DisciplIne: c
3

» C2, C1 » C2

Class-l jobs always have preemptive priority over a Class-2 job.
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(4) Preemptive Class-I Conditional Prforlty DfscipJlne: C
3

» C
2

, C
2

» C
1

Cla55-1 jobs have preemptive prIority over Class-2 Jobs

only when there are two or more Class-l Jobs in system.

A Class-2 Job has preemptive priority over a single Class-I job.

(5) PreemptIve Class-Z Static Priority Di"scipllne: c
2

» c
3

' C
2

» C
1

Class-Z jobs always have preemptive priority ov~r Class-I jobs.

(6) Mixed Class-Z Static Priority Discipline: C
2

> C
3

, C
2

» C
1

A Class-2 job has preemptive priority over a single Class-I

Job but nonpreemptive priority over a patr of Class~1 jobs.

(7) Modified Alternating Priority DisciplIne: C
2

» C
1

The relative priority of a Class-Z Job and a pair of Class-]

jobs alternates as follows: If there are no Class-2 jobs and

fewer than two Class-l jobs In system. the ordering between

C2 and C3 Is undefined. Upon there being one or more Class-2

jobs and less than two Class-I jobs In system. the ordering

C2 > C3 goes Into effect until no Class-2 jobs are In system.

At the next epoch at which there are two or more Class-1 Jobs

and zero Class-2 jobs in system, the ordering C
3

> C
2

remains

In effect untIl but one Class-I job Is In system. A typical

busy period appears as an alternatIng sequence of Class-l and

Class-2 busy periods involVing only Job combinations of type

C3 and C2 , respectIvely; a sIngle Class-I job is processed

only when It Is the only Job in system.

In each of the priorIty scheduling rules described above, It Is assumed that

the discipline is of the preemptive-resume tYpe and that Jobs within the
same class are servIced in FCFS order.

r.esults will next be presented which enable the scheduling disciplines

to be compared for two different measures of performance: (i) the capacity

under the rule, and (Ii) the average flow time for Jobs when the rule is
employed.

The capacity under a scheduling rule was previously defIned to be the

smallest Input rate which causes the system to saturate for some specified
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set of joh stream characteristics. The cap,:lcity of the Jth .disetpllne

(as listed above) will be denoted by

Amax-J = Capacity of discipline j. where 1 ~ j ~ 7.

The capacity bound A~ax for this system has been previously given by

Equation (I); it was previously stated that not every scheduling rule. .
can achieve the capacity bound and that saturation might occur at input

rates less than that given by the capacity bound -for certain discipl ines.

The capacity for each scheduling rule is given below:

Amax-2 = [-6 + SQRT(B2 - 4AC)]/{2A), where A· fl~I[~2 + 2"lf2] (3)

B· "1"2[f1"2 + 2~I{f2-fl)]

C •

Amax- 3 • [-E + SQRT(E2 - 4DF)]/(2D). where D • f 1f 2 (4)

). -,\ =). =). ""Amax-4 max-5, max-6 max-7 max

F ... -2).1 II
. I 2

(see Eqn. 1) (5 )

The disciplines 4, 5, 6, and 7 are full-capacity disciplines (I.e., the

system saturates at the capacity bound), but the FCFS dIscipline, the

Nonpreemptive Class-l Static Priority rule, and the Preemptive Class-I

Static Priority discipline each saturate at an Input rate less than that

given by the capacity bound for certain Job stream characteristics.

If the job stream consists only of Class-I Jobs (i.e., f, • J and

f 2 = 0) or only of C1ass-2 jobs (fl-O and f 2
p J), the capacities wll)

obviously be identical for all of the scheduling rules. The more interest-. .
ing situation is the one where both classes of Jobs are present In the

input stream; the FCFS discipline, the Nonpreemptive Class-I Static Priority
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discipline, and the Preemptive Class-l Static Priority discipline each has

a capacity which is 1efs than the capacity bound, but the relative order­

ing of these capacities is also of interest. If the Equations (1) through

(4) are examined, the followi.ng partial ordert.ng is found to exist between

the capacities under the different scheduling rules:

..\ >..\ ..\ > ..\ A > ..\max - max-2'· max-2 - max-3'- max-2 - max-!

~ . ~max-l max-)

~ < ~max-l max-3

~ > ~max-I max-)

Implies

impl ies

Impl ies

specified below (for f I

2"1 < "2 (l + f 2)

2"1 m "2 (l + f 2)

2"1 > "2 (l + f 2)

where equality occurs only when the input stream contains onJy Class-lor

only Class-2 jobs. The capacity under the Nonpreemptive Class-l Static

Priority discipline wit,) always be greater than or equal to the capacities

of the Preemptive Class-I Static Priority discipline and the FeFS discipline.

The relative capacities of the FCFS dlsclpll~e and the Preemptive Class-I

Static Priority discipl.ine depend upon the Job stream characteristics as

> 0 and f
2

> 0):

Let us review the capacity results which have been presented for the

Two CPU System With Two Units of Memory. The FCFS discipline serves as a

t1benchmark" for comparing disciplines because the rule employs only the

information concerning the order of arrival to the system when choosing

the next Job for processing. The FCFS discipline Is not a full-capacity

discipline in this case; this means that the processIng of Jobs in order

of arrival to the system wIll not provIde the same degree of concurrent

processing as the full-capacity disciplines. This Is not surprising since

the FCFS discipline is restricted in the manner in which concurrent processing

can be achieved. Both the Nonpreemptive and Preemptive Class-I Static

Priority djs~iplines give preference to Class-l Jobs, but better service

for the Class-l jobs is obtained at the expense of decreased system capacity.

Again this multi-resource queueing system has characteristics whIch are

counter-IntuItive because It Is usually desirable to gIve preferent'lal

service to the IIsmall" Jobs which requ(re fewer of the system resources.
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Figures 1, 2, and 3 glv~ graphical examples of the manner in which

the capacIties of various disciplines vary as a functfon of the Job stream

characteristics. Each of the figures assumes that the expected processing

times for Class-I and Class-2 Jobs are specified, and for each discipline

graphs are given which show'the points at whIch saturation takes place.

Another convenient measure for the performance of the system is the

average flow time unde~ each of the scheduling ruJes. where the average
flow time F is defined as

F = f,E(F 1) + f 2E(f2). where E(F1) and E(F2) are the expected flow times

for Class-I and Class-2 Jobs, respectively.

At high Input rates. the average flow time should be anticipated to be lower

for the full-capacity disciplines than for those which are not fUll~capacity

rules. At low Input ra~es, the non-full-capacity rules may perform slightly

better than the fuJI-capacity scheduling discIplines. Denote the average

flow tIme under the j-th disciplIne by the following notation:

Fj ... Fj (>.,f l JJ.lI'}JZ)'

• Average Flow Time under Dlsclpllne-J for a given set of Job

stream characteristics.

If parameter f) ... 1 (only CI855-) Jobs ·'n the.input stream} or jf

fl·O (only Class-2 Jobs arriving to the system), all of the full-capacity

disciplines obviously have the same average flow times. The fuJl-capacity

disciplines have an interestIng property when there are both Class-I and

C1ass-2 arrivals to the system: the relative orderings ~f the average flow

times under the disciplines depends only on the values for parameters

J.Il and }J2· The relative orderings for the full-capacity disciplines are

shown below for the case In which 0 < f, < I (jobs of both classes in the

arrival stream) and 0 < A < >. (.rlonsaturated operation):max
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Condition Ordering of Avg. Flow Times

"1 / "2 ~ 112 or E(Pl)/2 = E(P2) F4 = F
S

• F
6

~ F]

~ /1l2 <: 1/2 E(P1)/2 > E(P2) - -or F
S

< F6 < F] < F4

"1 / "2 > 112 or E(P1)/2 < E(P2) F4 < F] < F6 < F
S

above Fj terms assume some specified value for f) and Input rate A)

the meaning of each subscript j i~ gtven by:

(4) Preemptive-Class-l Conditional PrIority Discipline

(5) Preemptive Class-2 Static Priority DisciplIne

(6) Hixed Class-~ Static Priority DiscIpline

(7) Modified Alternating Priority Discipline

Figures 4 and 5 show the average flow time for each discipline as a

function of input rate Afor two different sets of Job characteristics.

In Figure 4, the expected processing time for Class-2 Jobs is three

times the expected processing time for Clas5~1 Jobs, and seventy-five

per cent of the incoming Jobs belong to Class-l. Figure 4 therefore

corresponds to the situation In which jobs with small resource requirements

have shorter running times than those'wlth large resource requesLs.

Figure ,5 illustrates the average fJow time for the case In which

Class-I jobs on the average require three times the processing time of

Class-2 jobs and where Class-I jobs constitute only twenty-five per cent

of the Input stream. The job characterIstics assumed in Figure 4 seem to

be more realistic than those of Figure 5 but both cases are useful for the
sake of comparison.

The job characteristics assumed In Figures 4 and 5 Illustrate the

relative loss of capacity for those disciplines which cannot achieve full

capacity. In Figure 4, the maximum capacity Is given by ). ... 2.6]j. max
the FCFS, NonpreemptIve Class-I Static Priority, and Preemptive Class-I

Static Priority disciplines have capacities whIch are respectively 92%, 93%,

and 84% of full capacity for thIs case. The job parameters of Figure-5

result in the FCFS disciplIne saturating at 80% of full capacIty, the

Nonpreemptive Class-I Static Priority at 86%, and the Preemptive Class-I

Static Priority at 8Itt of). . It may be seen that the reductIon in. max
system capacity can be quite significant for reasonable job characteristics.
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The average flaw time for small fnput rates are not shown in Figures

4 and 5 because these values are very nearly identical for all of the

disciplines. At these low Input rates. however. the disciplines which do

not achieve fuJI capacity may nevertheless have average flow times which

are slightly better than those of the full capacity disciplines. Figures

4 and 5 demonstrate the superiority of the full capacIty disciplines at

the higher input rates.

Figures q and 5 clearly illustrate that the average flow times for the

full-capacity disciplines can differ by a substantial amount. For the

job stream characteristics of Figure 4, the Preemptive Class-l Conditional

Priority discipline cl'early has the lowest average flow time of the full­

capacity dIsciplines. In Figure 5 the Preemptlve- and Mixed Class-2 Static

Priority disciplines exhibit the lower average flow times.

The relative performance of the full-capacity discIplines may be

summarized in word form as follows: The Preemptive Class-2 Static Priority

rule and the Mixed Cla5s-2 StatIc Priority discipline differ only slightly

in average flow time, and both perform better than the other two full­

capacity rules (in terms of average flow time) when the expected Class-2

processing time is less than half the average Class-l processing time.

The Modified Alternating Priority dIscipline is a good Ilcompromisell rule

in that it performs reasonably well regardless of the relationship between

the expected processing times for the two job classes (i .e., while it

never has the lowest average flow time for the general case, neither does

it exhibIt the highest average flow time of the full-capacity ruTes). The

Preemptive Class-I Conditional Priority rule is the best performer in

terms of flow time when half the average Class-I processi~g time is less

than the expected CI~ss-2 service time.

Observations and Con lectures

Results have been presented whIch describe the performance of a simple

multi-resource queueing system, the Two CPU System WIth Two Units of

Memory, under seven different scheduling rules. It was shown that there

exists a capacity bound for this system which may be Interpreted as the

smallest Input rate at which the system Is guaranteed to saturate regardless

of the scheduling rule that Is employed. Of the seven schedulIng rules
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,
examined, three were found to saturate at Input rates less than that

given by the capacity bound. For the four full-capacity scheduling rules,

the ordering between the average fJew times under each discipline was

found to depend on the relationship between the average processing times
of the two Job classes.

An explanation will first be given for the relative orderings of the

average flow times under the full-capacity disciplines. Half the expected

Class-l processing time, E{PI)/2, may be consFdered to be the Jlaverage

effective processing load" imposed on the system by a Class-I job which

is simultaneously processed with a second Class-l job. The scheduling

rules which give"preference to C1ass-2 jobs, the Preemptive- and Mixed

Class-2 StatIc Priority dIsciplines, perform better than the other two

full-capacity disciplines when the average CTass-2 processing time is less

than the lIaverage effective Class-I processing load." likewise, the

Preemptive Class-I Conditional Priority scheduling rule favors the Class-]

jobs and exhibits the lowest average fJOiI time when the "expected effective

Class-I processing load" is smaller than the average Class-2 processing,
time. These results are consistent with the observed behavIor of disciplines

for single-server queueing systems in which the favoring of "short ll jobs

has the effect of reducIng average flow time.

The capacity bound for the Two CPU System WIth Two Units of Memory

was found as the solution of a Linear Program in which the constraints were

found by application of little's Theorem [5]. The solution. set of state

probabilities specified the proportion of time that the "system should

spend in process~ng the various job combinatIons In order to achieve full­

capacity. It may be noted that the solution set of state probabilities

was unique for this system under any given job stream characteristics and

that the state probabi J Ity associated with "0ne Class-I Jobu had a value

of zero. This Implies that this particular job combination is undesirable

in terms of capacity, and it Is intuitIvely reasonable to expect that a
,

full-capacity rule will ass.lgn this lower priority than other Job combinations.

Consider the three priority orderIngs that could be given to the Job
combinations:
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Static Pri.orlty

Two Cla~s-I Jobs

One Cla55-·1 Job

One Class-2 Job
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CJass-2
Stat Ie Pr 10rT ty

One Class-2 Job

Two Class-J Jobs

One Class-I Job

Class-I
CondItional Priority

Two Class-l Jobs (highest)

One Class-2 Job

One Class-I Job (lowest)

The Class-I Static Priority ordering is the only one which is unable to

attain full-capacity, a fact which may be explained by there being an un­

desirable job combination (One Class~I,Job) assigned a higher priority than

some desirable job combination (One Class-2 Job) •.

Hulti-resource queueing systQms are Interestl~g because a scheduling

discipline must implement a decision rule for choosing the next combination

of jobs to be processed (In effect, selecting the amount and type of con­

current processing to take place). A scheduling rule for a multiple-resource

queueing system, even if it does not Involve· any overhead or Inserted

idle-time. may nevertheless be unable to attain full-capacity. Counter­

intuitive behavior may result as a consequence of the characteristics of

multi-resource queues; for example, the Class-I Static PriorIty rules

illustrated that giving better service to one job class could actually

decrease system capacIty.

The results for the Two CPU System With Two Units of Memory showed that

more than one full-capacity scheduling rule may exist for a multi-resource

queue. The Mixed Class-2 Static Priority rule and the Modified Alternating

Priority rule demonstrated that a strictly preemptive rule Is not needed

to attain fuJI-capacity; however, these rules strongly suggest that

preemption may be needed in order to allOw a desirable job combination to

go into service when in fact ·some .deslrable Job combination can be formed

from the set of Jobs in system. For example, it must be possible to

preempt the lone Class-I job left In system after the departure of a

Class-I job if there Is some Class-2 Job to be processed•. It is obvious,

however. that there do exist situations In whIch preemption is not needed

in order for a discipline to attain fuJJ capacity; a c~nYenlent example

of such a multIple-resource system is the multiple-processor queue in

which each job requires the use of one of the c processors In system (where

c > I). The solution set of state probabilities for such a system Is not unique,

but every job combination Involving fewer than c jobs has probability

zero in the solutIon set of state probabilitIes. For thIs system, the
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"desirab.lell job. comhinatlons are those' which Involve c jobs, and all other

job comb i nat ions may he the:ught to be " undes' rab 1ell because they have

probability zero in the solution set. The job combination in progress

defines the sys.tem state, and we may. gain 1ns.ights into why preemption

is not necessary by examini.ng the manner in which transitions bet~een

states can occur. If a desirable Job comb[natlon is in service, the

system will be able to make a transition to another desirable state upon

the departure of a job whenever the queue is nonempty (i.e., whenever a

desirable job combination can be formed from the jobs In system). likewise,

the arrival of a job to the system when. an undesirable job combination is

in service will be immediately processed, and once again a transition will

occur to a desirable state if in fact a desirable state may be constructed

using the job in system.

It is a difficult task to dIscover other multi-resource queues for

which there exist full-capacity disciplines which do not employ preemption,

and the material which appears below should be regarded as generalizations

based on the experl~ces of the authors. The study of the Two CPU System

With Two Units of Memory suggested that a full-capacJty dJscJpllne should

only process an undesirable Job combination (i.e., one having probability

zero In the solution set) when It is Impossible to construct a desirable

combination from the jobs In system. This conjecture, jf valid, has rather

strong implications for a full-capacity discipline. If a desirable job

combination is bei~g serviced and a departure occurs, it should be the case

for a full-capacity discipJine that (a) the Jobs from the combinatJon which

still remain in system must themselves form a desIrable combination, or

(b) another desirable job combination must b( able to go into service if in

fact some desirable job combination can be formed from the set of jobs in

system.

It seems likely that the necessary and sufficient conditions for

achievi,ng full capacity without preemption are related to both the solution

set of ~tate probabilities (which will not be unique In general) and the

manner In whJch transitions can occur between various system states (i .e.,

job combinations.) under the discipline. If we consider a dlsciplJne such

as the FCFS rule, Jt Is apparent that the ru'e does not allow certain state
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transltTon~ which ~jght be bene~iclal from the standpoint of system capacity.

The value of preemptlon In achieving full capacity lies in the ability to

make transition~ between any two 5YSt~ states which are consIstent with the

set of jobs 1.0 sys.tem. One would expect that preemption is not necessary

for full capacity only if the transitions which can occur without preemption
•

are COmpat i.b lei n some s'ense wi th the lIdes t rab 1e" 5 tates in one of the

solution sets of state probabilities for the system.

Notes on the Method of Analysis: An-ExampJe.

This paper summarizes results obtalned independently by the authors in

references [1] and [2]; the total collection of results and the associated

derivations are extremely lengthy and wIll not be presented here. For

purposes of illustration. an abbreviated analysis will be given for one of

the scheduling rules, the Preemptive Class-I Static Priority rule.

For a majority of the scheduling disciplines an approach involving a

Semi-/·1arkov process was used. Comparable approaches were used by authors

such as Avl-Itzhak, Maxwell, and Miller [6] for treatIng single-server

queueing models.

For the purpose of analysIs, It Is often sufficient to define sy~tem

states that are more gross than those needed for a detailed description

of the system at a point In time; the states. however, are so defined that

the state transition process Is Markovian. A particular result, for example

the expected flow time for Class-I jobs, is synthesized by conglomerating

conditional results Into an unconditional result by using the probabilities

of finding the system in various mutually exclu~lve and exhaustive states.

A Poisson arrival finds the system in a particular state with the same

probability as the steady-state probability of the system being in that

p~rticular ~tate (see Strauch [7]). The steady-state probabilities in turn

are obtained by using results from the theory of Semi-Markov processes [8].

In each model, for certain states the system is shown to be equivalent

to some other prevIously ana~yzed queueing system In some of Its states.

This equivalence Is merely an operational one, and It Is always with reference

to a particular objective set for~h. The lequlvalence technique' is

advantageous since It allows a modular buildup of a complex system.
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The Preemptive Cla55-1 Static Priority discipline has been chosen to

illustrate this 'equivalence technique'j recall that this scheduling

discipllne gives Class-I jobs preemptive priority over Class-2 Jobs.

This rule is ~omewhat easier to analyze than the remaining disciplines

but nevertheless gives insights into the method of analysis. The compu­

tation of the expected flOA' time for Class-! jobs is straightforward be­

·cause the system operation as viewed by Cla55-1 jobs appears to be that

of an H/H/2 queueing system under the FCFS rule. The more interesting

problem is that of obtaining the expected flow time for Cla55-2 Jobs.

Using standard queueing terminology, some results for previously

analyzed systems are given below along with their defining parametersj

these results will be utilized by means of the lequivalence technique I

mentioned earlier:

busy period of an M/G/J system - Poisson input rate A, general

processing time P

busy period of an H/H/2 system - Poisson Input rate A. exponential

service rate IJ

delay cycle of an M/G/I system - Poisson Input rate A, general

processing time p. and initial delay period TO (for a more

complete description, see reference [9], page 151)

The symbol lEI will be used to define equivalences between the defining

parameters gIven above and other chosen quantities. The system states

of interest are shown below tn Figure 6.

I
I
!

me

system has
no jobs of

either class

(y

no Class-j Jobs
left In the system

a Class-I
Job arrives

Ir-Process Class-I Jobs ....
t;only

sys. system
busy Idle

II I l, 2 Id Iestate {oj • •
l, statelO

(0 )s ,stem state 1)

Figure 6a.
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a Class-2 job
arrives

system empty
of all jobs

time
~ system
f--------- L2 ----------'~, ; dIe. state (0)

system state (2)

system
idle,
state

(0) .I
_-LO-Jj

sys.
busy

Figure 6b.

For the purpose of finding the expected Class-2 flow time E{F
1

), the

equivalences are defined as given below:

State (1) is equivalent to the state of an M/G/1 system

delay cycle, with parameters A= A
2

, P :=: Pl-2' TO .;:

during a

lj I'•
State (2) is equivalent to the state of an H/G/I system during a

busy period, with parameters A: A
2

, P :: Pl-2'

where PI-2 Is the residence time for a Class-2 job as illustrated

in Figure 7 (for further explanation see reference [9], pages 169-173).. ,
The intervals T i are the busy periods of an M/M/2 system with A:).l and

~:: ~I; the number of times that they occur has a geometric distribution

with a complicated parameter. The first two moments of the random variable

Pl -2 are required, and these are easily obtained using some basic probabilistic
arguments.

job J
completed

a Class-!
b s

res idence t tme

Figure 7.

a Class-Iprocessing of
a Class-2 job, J. Job arrives, JO arrl ve •

& Pree[i1ptsis started & preempts
no noT

I Class-l job T2 Class-l jobs
Process In the syste Process in the system

ct-I job c 1-1 jobs

~ Pl-2



A Class-2 job, when it arrives, wilT find the system either in state (0),
state (I), or 'state (2).

Let,

E(F2 /S) = Expected flow time for a CTass-2 arrival which finds the

system in state-(s), where s cO, I, 2.

Using the system equivalencies defined earlier, we have

system equivalence is,

For the purpose of finding the first two moments associated with L
1

I'
•

state (1,1) is equivalent to the state of a M/H/2 system

during a busy period, with parameters A :: AI and lJ .=: P
l
"

Therefore,

and
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Various subs.titutions would lead to the expressions for the conditional

expected flow times. These are then combined using the probabilities,

pO), for findi,.ng the system in state i. The probability p(;) is simply

E(L.)
I

E{Busy Cycle length)

Again using the same system equivalences as before,

-

E(Busy Per;od) =

and

E(Busy Cycle length) == E(Busy Period) + E(ldle Period),

By taking ratios, we get the respective probabilities P(I). Then, E(F
2

)
is obtai,ned by

3
= X

1=0



= 2A.1(2.-, 1/".1 )
2

"I (1+A/"1)
+
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(I+A1/"1).2'2

2
"2

+
(I+A/"I)

"2 (1-, /" I)

The technique outlined above is a 'powerful one which is relatively

straightforward to apply~ The experiences of the authors in utilizing

this technique is that algebraic manipulations (note the cumbersome expression

for E(F2» cause some difficulties but that the technique otherwise
has a great deal of appeal.

SUlT'fTlary

Basic definitions and terminology have been given for a multi-resource

Queue. a type of congestion system in which arriving jobs require the

simultaneous use of some combination of the system resources. Results

have been presented for a sImple example of a multi-resource queue, the

Two CPU System With Two Units of Memory. These results illustrate that

multi-resource queues exhibit a behavior whIch Is counterintuitIve in

many cases and in partIcular that a scheduling rule for such a system

must be concerned with the choice of a combination of Jobs to be processed

concurrently ~nd not merely the choice of the next Job to go into service.

The manner in which a scheduling rule for a multi-resource queue favors

the various job combinations has been shown to drastically affect both the

capacity and average flOo'l times for Jobs. It Is the belief of the authors

that the properties of multi-resource queues may help to explain those

instances in which the usual single-resource queueing models inadequately
model the behavior of actual computer systems.

Bibl iography

[11 Omahen, K. J .. Analytlc models of multiple resource systems. Ph.D.
Thesis, Committee on Information Sciences, University of Chicago,
June, 1973.

[2] Marathe, V. P.
requirements.
May, 1972.

Priority queueing systems wIth simultaneous server
Ph. o. Thesis, Operations Research. Cornell University,



31

[3J IBH Staff GPSS!360 User's Hanual. IBH Corp .• Form No. H20-0304.

[4] Habermann, A. N. Prevention of system deadlocks. C6nm. "AtH 12
(1969). 373-377. 385.

[5] Little, J. D. C. A proof of the queuei,ng formula l=.\W. Operations
Research 9 (1961). 383-387.

[6J Avi-Itzhak, B., Maxwell.
alternating priorities.

H. L., and HIller, L. W. Queueing with
OperatIons Research 13 (1965), 306-318.

(7) Strauch, R. E. When a queue looks the- same to an arriving customer
as to an observer. Management Science 17 (1970), 140-141.

[8] Cox, D. R. Renewal "Theory. London: Methuen, 1962.

[9] Conway, R. W., Maxwell, ~f. lo. and Hiller, L. W. Theory of.Scheduling.
Addison-Wesley, Reading, Massachusetts, 1967.


	A Queueing Model for A Multiprocessor System with Partitioned Memory
	Report Number:
	

	tmp.1307986960.pdf.Xj9dp

