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Abstract

A general multi-resource queueling system is defined to be a single
congestion point associated with a number of different resource types
and having arrivals which require some combination of the system resources
simultaneously for the duration of their processing times. Such a 5ystem
is characterlized by a variable Processing rate which is a function of the
cambination of Jobs being concurrently serviced at any fnstant. The
capacity bound for a multi-resource queue Is the smallest input rate which
is guaranteed to cause saturation regardless of the scheduling rule
employed, give some fixed set of job stream characteristics.

This paper examines the performancé of a sImple example of a multl-
rgsource queue, a two CPU system with two memory partitions. There
afe two classes of Poisson arrivals, and each Job class has independent
and exponentially distributed service times. Resource requirements are
such that Class-1 Jjobs need one CPU and one block of memory, while Class-2
Jjobs require a single CPU and both memory blocks in order to be executed.
An algorithm for calculating the capacity bound is glven which enables
one to determine the "optimal" proportion of time that the system should
spend In processing various job comblInations. Seven scheduling rules
are described in terms of the manner in which preference is given to
different job combinations, and the notion of assigning priorities to
combinations of jobs is stressed. The paper then glives an overview of the
relative system performance under these rules by comparing the system
capacity and average flow times for these disciplines. Finally, a sample
derivation is provided for one of the scheduling rules In order to
illustrate a powerful analytic technique used by the authors to obtaln

many of the described results.




Title: A Queuelng Hodel for a Hultiprocessor System with Partltloned
Memory

Queueing Theory can provide valuable Insights into various aspects
of computer sfstem performance, but exlstlng compufer systems exhlbit
forms of resource allocation which are not accurataly represented by the
queueing models analyzed to date. An examinatlon of the 1lterature
leads to the conclusion that previously analyzed models have two common
features: (I} each queue is assoclated with elther a single resource
or a number of identical resources, and {Ii) arriving Jobs require
exactly one unit of the scarce resource. Thils conclusion Is valid for
a vast majority of the models Including queues with feedback, networks
of queues, and multiple-server queues.

The theses by the authors {[1,2] have Independently attacked a
class of queuelﬁg problems Involving a form of resource allocation not
previously treated in the literature. |In order to better define this
class of problems, the term multi-resource queue is introduced to describe

the situatlion In which a congestion point Is associated with a number of

resources and where Job arrivals require the simultaneous use of some

comblination of the system resources. Computer.systems provide strong

motlvation for examinlng'multi-resource_queues because a Job or process
must generally be allocated both a processor and primary memory in order
for executlon to take place. The notion of a multi-resource queue may
also be seen in a simulation language such as QPSS {3] where users may
define storage entities to handle discrete resources for which the
allocation quantity may be several unlts.l Thls paper prasents results
for an example of a multi-resource queue which, while, simple in certain
respects, nevertheless exhibits a number of Interesting propertles
which are quite different from those for the usual case of a queueing
system involving a single resource type.

Notation & Terminology for a General Multl-Resource Queue

A general multi-resource queue Is a system consisting of several

different resource types and an arbitrary number of units of each resource
type. Each Job arriving to the system requlires a combination of the
system resources simultaneously for the duratlion of the processing time

of the Job. The arriving Jobs fall Into varlous classes, and each Job
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class is characterized by an arrival process, a brocesslng time distribut-
lon, and a fixed resource request which describes the reéource requlre-
ments of each job within the class. This Implies that each job within
the same class has identlcal resource requlrements; howevgr, this fixed
resource request may Instead be Interpreted to be the max!mum resource
requirements for jobs within a glven class. |In thlsg fatter case, the
deadlock prevention technique proposed by Habermann (4] might be employed;
dynamic resource allocation could take place, but deadiéck would be pre-
vented by never simultaneously Processing a set of Jobs for which the total
of the maxImum resource requirements would exceed the avallable system
resources. There will be a queue for Jobs walting for service, and this
queue will be taken to be Infinite In length unless specified otherwise.
Define: . '
[ = Number of Resource Types (I > 1),
Ri= Amount of the Ith Resource in System, | = I,..%.i;
J = Number of Job Classes. _
~Jobs belonging to Class-], where Jwil,...,J, have the
followlng characteristics: .
73-= (rjl,rjz,...,rjl) = Resource Request Uectorifor
the jth Job Class ln@lcaﬁfng that'rjl units of
Resource Type | are requlred,.rJz unlts of ‘
Resource Type 2, etc. Furthermore, 0 <r T E.R;
and-rjl > 0 for at least one |.
lJ = Arrlval Rate for Class-] Jobs (hencef l/lj =
mean fnterarrlval time for Class-] Jobs).
1/11.l = Expected Processing Tlée for Class~} Jobs.
The total Input rate A for Jobs of all classes Is deflined to be
A= ¥,
N
The proportion of Jobs in the overall Input stream whlch_bdlong to Class-]
will be denoted by fj and .defined as ' L .
fJ -‘Xj/A, where 1 < | < J.
Glven the basic characteristles of a multl-resodrcelqueue. It Is now
possible to Introduce additlonal terminology which lsluseful-For describing
queuelng systems of thls type. For & multi-resource queue, It | possible

to have several Jobs s(multaneously belng processed by the system, subject to
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the restriction that the total of the resources required by the combination
of jobs Is less than or equal to the available resources in the system,
Define:

[nkl'nk2""'"kJ] = Job Combinatlon k consisting of % Jobs

of Class-1, M2 Jobs of Class-2, etc.
A feasible job comblination k Is one having fhe.followlng

prbperty:

J
Zn *r <R for I =1,2,.,.,I.
J=1 kJ ji 1 .

A multi-resource queuelng system will be sald to be saturated when
the expected flow time for one or more Job classes Is Infinite.

The capacity-of a multi-resource queueing system under a scheduling
rule is deflned as follows. The characteristics of the Job stream will
be fixed In a manner to be next descrlbed. Assume a stationary distrl-
bution for the processing times assoclated wlth each jdb class, and take
the proportion of Class-] jobs in the overall fnput stream, fj’ to be
fixed at an arbitrary valuﬁ which Is subject to the following restrictlons:

<f, <1, and f,. =1,
0 < j < an jEI i

Given that the type of arrival process for each Job class also remains
constant, we QIII say that the job stream characteristics are fixed and
that the only parameter which can vary Is the overall Input rate. Under
these circumstances, the capacity of the system under a specified
scheduling discipline Is deflned to be the smalleﬁt overall input rate
at which the syétem becomes saturated.

A capaclty bound, when it exlsts for a multl-resource queve, will

be deflined to be Amax-lnflmum of the overall Input rates at which the

system ls guaranteed to saturate regardless of the discipline which is

used, given that the Job stream characterlstics are flxed as described
previously. The capacity bound for a multl-resocurce queue is useful for
measuring the performance of varlous scheduling disclplines because, given
some fixed Job stream characterlstics, the capaclty under a particular
scheduling rule may be less than the capaclty bound, |f the capacity under
a certain schadullng disclpline Is equal! to the capacity bound for every

set of job stream characteristlcs, the scheduling rule Is sald to be a full-

capacity disclpline for the mult!-resource queueing system.
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The multi-resource queueing system will In general have a varlable
processing rate which is a functlion of both the number and type of Jobs In
service. The feasible job combinations are obviously Important in this
respect because the processing rate depends - dlrectly on the manner in which
jobs are concurrently processed. Schedullng rules for multl-resource queues
will greatly Influence the processing rate through the cﬁoice of Job
combination to be processed at any instant. The capaclty bound is a useful
quantity because It sPeC|fles the smallest Input rate which saturates the .
system regardless of the manner in which the schedullng rule operates; this .-;
capacity bound {s therefore related to the maxlmum expected processing B
rate that can be achieved by the system when given a specifled set of job
stream characterlstlcs.
This paper will be concerned with multi-resource queues for which

work-conservina disclplines are employed, where the term "work-conserving'

refers to situatlions In which there is no wasted proﬁesslng time such as

occurs with switchover times or with preemptlve-repeat priority dlsclplines.
For the classical single-server queue, work-conserving disclplines.are full-
capacity dlscipllnes. In contrast, a disclpline for a multi-resource queue

may be work-conserving without being able to achlieve full- -capacity.

Two CPU System With Two Units of Memory
A multi-resource queueing system which will be examined under a varlety

of different scheduling disciplines will now be described. The system wil]
conslist of two resource types which will be Interpreted to be Central
Processing Units (CPUs) and blocks of primary memory. There are two CPUs
(Resource Type-1), and the primary memory has been partitioned into two
blocks (Resource Type-2}. There are two job classes; Class-1 Jobs require
one CPU and one block of memory, while Class-2 jobs require one CPU and two
blécks of primary memory. Class-1 and Class-2 Jobs arrlve in a Poisson
stream at rates A] and 12, respectlvely. The processing tImes for Class-|
Jobs have a negatlve exponentlal distrlbution, and those for Class-2 Jjobs
are also exponentially distributed. UsIng notation Introduced for '
the general model, the system may be described as follows:

Ry = 2 (Number of CPUs).

R, = 2 (Number of blocks of primary memory).




Class-1 Jobs:
l] = Polsson Arrival Rate for Class-1 Jobs.

P, = Random Variable denoting a Class-~] Processing Time which has a
negative exponential distribution.

E(PI) = Expected Class-1 Processing Time,
= 1y, ’
1

GI = (1,1) = Resource Request Vector for Class-1 Jobs indicating
that one CPU and one block of primary memory are required,

F{ = Random Variable representing a Class~) Flow Time (i.e. the inter-
val between the arrival of a Job and the completion of service
for that job). _

Class-2 Jobs:
12 = Poisson Arrival Rate for Class=2 Jobs

P2 = Random Varlable denoting a Class=-2 Processing Time having a
negative exponential distribution,

E(Pz) = Expected Class-2 Processing Time,
- l/uz.

92 = (1,2) = Resource Request Vector for Class-2 Jobs Indicating
_ that one CPU and two blocks of memory are needed.

F, = Random Variable used to represent a Class-2 Flow Time.

For any multf-resource queue, the feasible Job comblnations specify the
varlous ways in which combinations of Jobs may be simul taneously processed.
The resource requirements of the two Job classes glive the following feasible

combinations for thls system:

C, = {1,0] One Class-1 Job
C2 = {0,1] One Class=2 Job
C3 = [2,0] Two Class~1 Jobs

Information concerning the resource requirements of the Job classes Is not
needed to analyze the descrlbed system If the feaslble Job combinatlons are
known. |t might be pointed out that the same combinations mfght result for
another multi-resource queuelng system with different resources and changed
resource requlrements for the Job classes; for example, a two-resource
system with two Job classes would have the same set of feaslble Job .
combinations for the case In which R =2, R, =5, GI = (1,2), and iz = (1,4).
Thls stresses the Importance of the feasible Job combinatlons in describling
-the system and Implles that results of analyzing the Two-CPU System With Two
Units of Memory wlll be appllicable to other multl-resource queueing system
with slmllar sets of feasible combinations. _

The capaclty bound lmax has been previously defined as the infimum of




the overall Input rates at which the system Is guaranteed to saturate
regardless of the scheduling rule which Is employed, given that the job
stream characteristics are held constant. This capaclty bound A ax will
be a function of the valid job combnnatlons, the relative input rates and
the processing time requirements for the two Job classes. The following
notation will be required in the material which follows:

A= A] + 12 = Overall Poisson Arrival Rate for Jobs
f' - Alll = Proportion of jobs which belong to Class-1.

fz = 12/1 = Proportion of Jobs which belong to {lass-2.
If the job stream characteristics are held constant for this system (i.e.,
f', f2' E(P'), and E(P2] held constant), the capacity bound A ax Tor the
Two CPU System With Two Unlts of Memory fs glven by

Amax - ]/[flE(P])lz + sz(Pz)]. . | (1)

PROOF. Let the following functlons represent the steady-state
probabilities that the system is In a specified state, given that the

system is operating under an arbitrary schedullng rule and that the system
i$ nonsaturated at Input rate A:

1, (A) = Prisystem idle], . : ;
ﬂl(l) = Pr[job combination [1,0) In progress],
nz(x) = Pr[job combination [0,1] in progress],
n3(l) = Prijob comblnation [2,0] -in progress].

Assuming that there [s zero overhead, all system states have been intro-
duced, and it must be the case that

3 4
IZ%“'(A) -1 - no(l), and no(l) > 0.
The amount of work which arrives to the system per unit of time for each !

of the two classes Is

AfIE(P]) = Expected amount of processing time requested by Class-1 :
jobs per unlt of time,

AFZE(PZ)'- Expected amount of processing time requested by Class-2
jobs per unit of time.




The steady-state probabilities may be related to the amount of work arriv-
ing per unit of time by applying Little's Equation [5] to the processor
system; this gives the following relation:

[Expected no. of jobs in progress]

=[Arrival Rate for jobs] - [Expected time in processor].

Using the above result, the following equations are obtained for Class-]

and Class-2 jobs, respectively:
[y (3) + 21, ()1 = [3f,11E(P,)],
[1,()] = [Af,1{E(P,)].

The sum of the probabilities that a valid Job combination is in progress
may be made arbitrarily large by increasing the input rate A, and the

system capacity Amaxj under the jth discipline will be that input rate

such that
3
limit z ﬂ'(J\) =1 and limit no(A) = 0,
AtX . im] At .
max j : max j

The capacity bound lmax is the smallest input rate at which the system is
guaranteed to saturate, and the bound can be found by solving the following

Linear Program:

lmax =  Max A
Afﬂ}(l).ﬂz(l),w3(k)
such. that ﬂl(k) + 2ﬂ3(1) = AflE(P]),

m, (1) = Asz(Pz),

and wl(l) + ﬂz(l) + ﬂB(A) = 1.

The solution for all f] and fz Is found by jnspectlon to require

nl(k) = 0, and therefore for A=Amax



nI(A) + nz(l) + w3[l) - lf'E(P])/Z + AFZE(PZ).

= MFIE(P)/2 + £,E(P))],

which implies that

Amax = I/[fIE(P])/Z + fZE(PZ)]' ' Q.E.D.

In obtalning this result, it was not hecessary to take Into account the
distribution types for the arrival process and processing times. The bound
is valid for arbitrary distributions and depends primar!ly on the valid job
combinations for the system.

The above derivation illustrated that the capacity bound may be
calculated as the solutlon of a Linear Program, and the solution gives
insights into the manner in which jobs should be simultaneously processed
in order to achjeve full-capacity. Consider the proportion of time that
should be spent in processing the various job combinations as the input
rate approaches the capacity bound; the derivation gave the following values:

lim T (x) =0, 1lim T () = A

M‘kmax At max

E(P Y, 1lm w3(1) = E(P Y/2.

A max |
ma

max 2
X

The above values will be referred to as the solution set of state probabilities

for the Linear Program. These values suggest that the system should spend

all of its time in processing elther a single Class-2 job or a pair of

Class-1 jobs in order to achleve the capacity bound. A single Class-1 job

may be considered to be an '"'undesirable" job combination because It Is

assigned a probability of zero In the solution to the Linear Program and

- therefore should be avoided if system capacity is of prime importance. . ;
References [1] and [2] independently analyzed a number of scheduling

rules for the Two CPU System With Two Units of Memory. This paper is

intended to be an overview which places the performance of various scheduling_

disciplines into perspective and which glves the reader insights into the

behavior of multi-resource queueing systems.




Before describing various scheduling rules for this multi-resource

queuveing system, it is useful to introduce the notion of assigning prioritles

to combinations of jobs. In a single-resource system, priority disciplines

will generally assign priorities to different classes of jobs; this situ-
atlon may be regarded as an assignment of priorities to job combinations
for the special case where the set of job combinations is identical to the
set of different job classes (i.e., there is at most one job in service
at any instant). The multi-resource queueing system Is characterized by
variable service rate which is a function of the job combinations In
service (i.e., the degree o% simultaneous processing is determined by the
number of jobs in the combination). The performance of a multi-resource
queueing system will be greatly influenced by the way in which the scheduling
rule chooses the combination of jobs to be serviced at any instant, and
the concept of priorities for job combinations follows in a natural way.

There are three feasible job combinatlons for the Two-CPU System With
Two Units of Memory, and there are six posslible priority orderings that
could be assigned to these job combinations (assuming the prlorities are
to be different). If we consider these combinations, though, l{ Is obvious
that it makes little sense to give higher prlority:to a single (lass-] jobl
than to a palir of Class-1 jobs,land priority orderings giving preference
to a single Class-1 job over a pair-of Class-) jobs should be removed from
consideration. Below are the three remaining prlority orderings that could
be given to the job combinations (top-to-bottom corresponds with highest-
to-lowest priority):

C3 = [2,0] Two Class-1 Jobs
C, = [t,0] One Class-1 Job Class-1 Static Priority

C2 = [0,1] One Class-2 Job

63 a [2,0] " Two Class-1 Jobs .

C, = {0,1] One Class-2 Job Class-1 Conditional Priority

Cl = [1,0}] One Class-1 Job
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C, = [0,1] One Class-2 Job
63 = [2,0] Two Class-1 Jobs Class-2 Static Priority

Cy = [1,0]1 One Class-1 Job

When describing a priority scheduling rule for this system, one will be

interested in not only the priority ordering for job combinations but also’
in whether a job combinaélon has preeﬁptive or nonpreemptive priority over
some other job comblnation. The following notation will be used to further

describe the scheduling rule:

c, > ¢C denotes that job comblnation C has nonpreemptive prloruty

over job combination CJ

>> C, denotes that Job combination C] has preemptive priority
] over Job combination C_}

Using this notation, a scheduling rule which assigns priorities to job com-
binations can be described In terms of the pairwise priority relationships
that exist between each distinct pair of job comblnations.

The authors have analyzed the followlng disclplines for the Two CPU
System With Two Units of Memory; in each case It Is assumed that there is

no overhead Involved In switching between Job comblnations.

(1) First-Come-First-Served (FCFS) Discipline:

Jobs go into service according to order of arrival whenever

there are sufficient resources available.

(2) Nonpreemptive Class-1 Statlc Priority Discipline: C3 > L,y € > C,

Class-1 jobs have nonpreemptive priority ocver Class-2 jobs,
and a Class-2 job is processed to completion upon going into

service.

{3} Preemptive (lass-1 Static Priorlty Discipllne: C3 >> Ez, Cl >3 Cz

Class-1 jobs always have preemptive priority over.a Class-2 job.




> C, 'C >> C

(4) Preemptive Class-1 Conditiopal Priority Discipline: 03 > €,y C, |

Class-~1 johs have preemptive priority over Class-2 Jobs

anly when there are two or more Class-1 jobs in system,

A Class-2 job has preemptlve priority over a slngle Class-1 job.

(5) Preemptive Class-2 Static Priority Discipline: C2 >> 83, Cz C,

Class-2 jobs always have preemptive priority over Class-1 jobs.
3 C, » C]
A Class-2 job has preemptive priority over a single Class-]

{6) Mixed Class-2 Static Priority Discipline: Cz > C

job but nonpreemptive priority over a pair of Classrl jobs.

{(7) Modified Alternating Priority Discipline: c, >> ¢

The relative priority of a Class-2 Job and a pair of Class-]

jobs alternates as follows: |f there are no Class-2 jobs and
fewer than two Class-1 Jjobs In system, the ordering between
Cz and C3 Is undefined. Upon thefe being one or more Class-2
Jobs and less than two Class-I Jobs In system, the ordering
02 > 83 goes into effect unti! no Class-2 Jobs are In system.
At the next epoch at which there are two or more Class-] jobs
and zero Class-2 jobs in system, the ordering C3 > 62 remains
in effgct until but one Class-1 Job Is in system. A typical
busy period appears as an alternating sequence of Class-1 and
Class-2 busy periods involving only Job combinations of type
C3 and C2' respectlively; a single Class-1 job is processed
only when it Is the only Job in system.

in each of the priority schedullng rules described above, it is assumed that
the drscipllne is of the preemptive-resume type and that Jobs within the

same class are serviced in FCFS order.

Results will next be presented which enable the scheduling disciplines
to be compared for two different measures of performance: (i) the capacity
under the rule, and (ii) the average flow time for jobs when the rule is

emp loyed.
The capacity under a schedullng rule was previously deflned to be the
smallest input rate which causes the system to saturate for some speclfled
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]
set of job stream characteristics. The capacity of the Jth discipline

(as listed above) will be denoted by

Amax-j = Capacity of:dlscipline j, where 1 <j < 7.

The capacity bound Amax for this syﬁtem has been prévlously given by
Equation (1); it was previously stated that not every scheduling rule
can achieve the capacity bound and that saturatlon might occur at input
rates less than that given by the capacity bound for certain disciplines.

The capacity for each scheduling rule Is given below:

2 2
lmax-] = ]/[f]/(zl'll) + leuz + flfz[‘/u‘ + I/l-|2]]) ()

Mmax—y = [-B + SQRT(B% - 1AC)1/(2A), where A = Fruyluy + 2u)f,] (3)

‘max-3 = ["E + SQRT(E - 4DF)1/(20), where D = f f, ()
E=2m,f, - flu,
F=2u,

*max-4 = k_max-B,= Max-6 = Amax=7 = *max (€€ Ean. 1) (5)

The disciplines 4, 5, 6, and 7 are full-capacity discipllines (i.e., the
system saturates at the capaclity bound), but the FCFS discipline, the

Nonpreemptive Class-1 Static Priorlty rule, and the Preemptive Class-]
Static Priority dfscipline each saturate at an Input rate less than that
glven by the capacity bound for certain job stream characteristics.

If the job stream consists only of Class~i jobs (i.e., f' = | and
fz = 0) or only of Class-2 jobs (fl-o and anl), the capacities will
obviously be identlcal for all of the scheduling rules. The more interest-
iné sitvation is the 6ne where both classes of jobs are present In the

input stream; the FCFS discipline, the Nonpreeﬁptive Class~] Static Priority
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]
discipline, and the Preemptive Class-1 Static Priority discipline each has
a capacity which is le;s than the capacity bound, but the relative order-
ing of these capacities is also of interest. If the Equations (1) through
(4) are examined, the follow{pg.partial grder[ng is found to exist between

the capacities under the different scheduling rules:

. )
Amax —-Amax~2‘-lmax-2 z-lmax-3” lmax-z Z-Amax-l

where equality occurs only when the input stream contains only Class-1 or
only Class-2 jobs. The capacity under the Nonpreemptive Class-1 Static
Priority discipline will always be greater than or equal to the capacities
of the Preemptive Class-1 Static Priority discipline and the FCFS discipline.
The relative capacities pf the FCFS disclpline and the Preemptive Class-1

Static Priority discipline depend upon the Job stream charactesristics as

specified below {for f, > 0 and fz > 0):
2up < u, (1 + fy) implies ‘max-1 < Amax-3
2u] = uz(l + fz) Implies -Amax—] - kmax-3
Zu' > uz(l + f2) implies lmax-l > lmax-B

Llet us review the capacity results which have been presented for the
Two CPU System With Two Units of Memery. The FCFS discipline serves as a
""benchmark' for comparing disciplines because the rule employs only the
information concerning the order of arrlival to the system when choosing
the next Job for processing. The FCFS disclpline Is not a full-capacity
discipline In this case; thls means that the processing of Jobs in order
of arrival to the system wlll not provide the same degree of concurrent
processing as the full-capacity disciplines. This Is not surprising since
the FCFS discipline is restricted in the manner in which concurrent processing
can be achieved. Both the Nonpreemptive and Preemptlve Class-1 Static
Priority disciplines give preference to Class-1 jobs, but better service
for the Ctass~1 jobs is obtained at the expense of decreased system capacity.
Again this multi-resource queueing system has characteristics which are
counter-intultive because I{t Is usually deslrable to glve preferential

service to the ""small' Jobs whlch require fewer of the system resources.
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Figures 1, 2, and 3 give graphical examples of the manner in which
the capacities of various disciplines vary as a function of the Job stream
characteristics. Each of the figures aSsumé; that the expected processing
times for Class-1 and Class-2 jobs aré'speclfled, and for each discipline
graphs are given which show the points at which saturation takes place.
Another_convenient measure for the performance of the system is the
average flow time under each of the scheduling rules, where the average '

flow time F is defined as

F = f'E(Fl) + sz(Fz), whare E(F]) and E(Fz) are the expected flow times
for Class-1 and Class-2 jobs, respectively.

At high Input rates, the average flow time should be anticipated to be lower
for the full-capacity disciplines than for those whch are not full-capacity
rutes. - At Tow Input rates, the non-full-capacity rules may perform slightiy
better than-the full-capacity scheduling disciplines. Denote the average
flow time under the j-th discipline by the following notation:

Fj = Fj (A' f] sl-ll :HZJ »

= Average Flow TIme under Disclpline-] for a given set of Job

stream characteristics.

If parameter f] = 1 (only Class=1 Jobs In the .input stream) or if
fy =0 {only Class-2 Jobs arriving to the system), all of the full-capacity
disciplines obviously have the same average flow times. The ful]-capacity
disciplines have an interesting property when there are both Class-! and _
Class-2 arrivals to the system: the relative orderlngs-of the average flow = !
times under the disciplines depends only on the values for parameters '
My and Hy- The relative orderings for the full-capadity’disciplines are
shown below for the case In which 0 < f, < | (Jjobs of both classes in the

]
arrival stream) and 0 < A < Amax {nonsaturated operation):
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Figure 3. Saturation Points For Case In Which Expected Class-1 Service Times Are Much Larger
Than Mean Class-2 Processing Times.
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.Bonditlon ) Orderlqg of Avg. Flow Times
uI{nz = 1/2 or E(P])(2_= E(Pz) Fll = Fg = F6 = F7
u'lluz <1/2 or E(P))/2 > E(P,) F‘S < -6 < 17'7 < F‘Il
ugfu, > 172 or E(P])/2 < E(Pz) F'li < F7 < F6 < ES

The above Fj terms assume some specified value for fl and Tnput rate A,
and the meaning of each subscript j is given by:

(4) Preemptive Class=-1 Conditlonal Priority Discipline

(5) Preemptive Class-2 Static Priority Discipline

(6) Mixed Class-2 Static Priority Discipline

(7) Modified Alternating Priority Discipline

Figures 4 and 5 show the average flow time for each discipline as a _
function of input rate ) for two different sets of job characteristlies. . j"
In Figure 4, the expected processing time for Class-2 jobs is three ‘
times the expected processing time for Class~1 jobs, and seventy-five
per cent of the incomlng Jobs belong to Class-1. Figure 4 therefore
Corresponds to the situation in which jobs with small resource requirements
have shorter running times than those wlth large résource requests.
Figure 5 illustrates the average flow time for the case in which
Class-1 jobs on the average require three tlmes the processing time of
Class~2 jobs and where Class-1 jobs constitute only twenty-five per cent
of the Input stream. The job characteristics assumed in Figure 4 seem to
be more realistic than those of Figure 5 but both cases are useful for the ;
sake of comparlson.
The job characteristics assumed In Flgures 4 and 5 {!lustrate the
relative loss of capacity for those disciplines which cannot achieve full
capacity. In Flgure 4, the maximum capacity Is given by Mpax ™ 2.67;
the FCFS, Nonpreemptive Class~] Static Priority, and Preemptive Class-1
Static Priority disciplines have capacities which are respectively 92%, 93%,
and 84% of full capacity for this case. The Job parameters of Figure 5
result in the FCFS discipline saturating at 80% of full capacity, the
Nonpreemptive Class-1 Static Priorfty at 86%, and the Preemptive Class-1
Static Priority at 84% of Amax' It may be seen that the reduction in '

system capacity can be quite significant for reasonable jJob characterlstics.
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The average flow time for small input rates are not shown in Figures
4 and 5 because these values are very nearly identical for all of the
disciplines. At these low input rates, however, the disciplines which do
not achieve full capacity may nevertheless have average flow times which
are slightly better than those of the full capacity disciplines. Figures
4 and 5 demonstrate the superiority of the full capacity disciplines at
the higher input rates.

Figures 4 and 5 clearly illustrate that the average flow times for the
full-capacity disciplihes can differ by a substantial amount. For the
job stream characteristics of Figure 4, the Preemptive Class-1 Conditional
Priority discipline cfearl? has the lowest average flow time of the full-
capacity disciplines. In Figure 5 the Preemptlve- and Mixed Class-2 Static
Priority disciplines exhibit the lower average flow times.

The relative performance of the full-capacity dlscipiines may be
summarized in word form as follows: The Preemptive {lass-2 Static Priority
rule and the Mixed Class-2 Static Priority discipline differ only slightly
in average flow time, and both perform better than the other two full-
capacity rules {in terms of average flow time} when the expected Class-2
processing time is Jess than half the average Ciass-l processing time.

The Modified Alternating Priority discipline is a good "compromise'* rule
in that it performs reasonably well regardless of the relationship between
the expected processing times for the two job classes (i.e., while it
never has the lowest average flow time for the general case, nelther does
it exhibit the highest average flow time of the full-capacity rules). The
Preemptive Class-1 Conditional Priority rule is the best performer in
terms of flow time when half the average Class-1 processing time is less
than the expected Class-2 service time.

Observations and Conjectures

Results have been presented which describe the performance of a simple
multi-resource queueing system, the Two CPU System With Two Units of
Memory, under seven different scheduling rules. It was shown that there
exists a capacity bound for this system which may be interpreted as the
smallest input rate at which the system Is guaranteed to saturate regardless
of the scheduling rule that is employed. 0f the seven schedullng rules
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examined, three were found to saturate at Iﬁput rates less than that
given by the capacity bound. For the four full-capaC|ty scheduling rules,
the ordering between the average flow t:mes under each discipline was

found to depend on the relationship between the average processing times
. of the two job classes.

An explanation will first be given for the relative orderings of the
average flow times under the full-capacity disciplines. Half the expected
Class-1 processing time, E(PI)IZ,-may be considered to be the average
effective processing Joad" imposed on the system by a Class-] job which
is simultaneously processed with a second Class-1 job. The scheduling
rules which give preference to Class-2 jobs, the Preemptive-~ and Mixed
Class-2 Statlc Priority disciplines, perform better than the other two
full-capacity disciplines when the average Liass~2 processing time is less
than the "average effective Class-1 processing load." Likewise, the
Preemptive Class-1 Conditional Priority scheduling rule favors the Class-]
Jobs and exhibits the lowest average flow time when the "expected effective
Class-1 processing load" is smaller than the average Class-2 processing
time, These results are con5|sgent with the observed behavlor of disciplines
for single-server queueing systems in which the favoring of "short" jobs
has the effect of reducing average flow tlime.

The capacity bound for the Two CPU System With Two Units of Memory
was found as the solution of a Linear Program in which the constraints were
found by application of Little's Theorem [5]. The solution. set of state
probabilities specified the proportion of time that the 'system should
spend in processing the various job combinatlons in order to achieve full-
capacity. It may be noted that the solution set of state probabilities
was unique for this system under any given job stream characteristics and
that the state probability associated with 'Cne Class-1 Job' had a value
of zero. This lmb]ies that this particular job combination is undesirable
in terms of capacity, and it is intuitively reasonahle to expect that a
full-capacity rule will asslgn this lower 5riorlty than other Job combinations.
Consider the threé priority orderings that could be given to the Job

combinations:
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Class~1 Class-2 . Class-1
Static Priority Static Priority Condltional Priority
Two Class-1 Jobs One Class-2 Job Two Class-1 Jobs (highest)
One Class-1 Job . Two Class-1 Jobs One Class~2 Job
One Class-2 Job , Oné Class-1 Job One Class-1 Job (lowest)

The Class-1 Static Priority ordering is the only oné which is upable to
attain full-capacity, a fact which may bé ekplalned by there being an un-
desirable job combination {(One Classvl'Job) assigned a higher priority than
some desirable job combiration (One Class-2 Job).-

Multi-resource queueing systems are Interéstlng because a scheduling
discipline must implement a decision rule for choosing the next combination
of jobs to be processed (in effect, selecting the amount and type of con-
current processing to take place). A scheduling rule for a multiple-resource
queueing system, even if it does not Involve  any overhead or Inserted
idle-time, may nevertheless be unable to attaln full-capacity. Counter-
intuitive behavior may result as a consequence of the characterlstics of
multi-resource queues; for example, the Class-1 Statlc Priority rules
illustrated that giving better service to one Job class could actually
decrease system capacity.

The results for the Two CPU System WIith Two Units of Memory showed that
more than one full-capacity scheduling rule may exist for a multl-resource
queue. The Mixed Class-2 Static Priority rule and the Modifled Alternating
Priority rule demonstrated that a strictly preemptive rule Is not needed
to attain full-capacity{ however, these rules strongly suggest that
preemption may be needed in order to allow a desirable job combination to
go into service when in fact some desirable Job combinatlon can be formed
from the set of jobs in system. For example, it must be possible to
preempt the lone Class-1 job left In system after the departure of a
Class-} job if there is some Class~2 job to be processed. "It is obvious,
however, that there do exist situations In which preemption is not needed
in order for a discipline to attain full capacity; a convenient example
of such a multiple-résource system is the multiple~processor queue in
which each job requires the use of one of the c processors In system (where
c > 1). The solutlon set of state probabilitlies for such a system 1s not unique,
but every Job combination Involving fewer than ¢ jobs has probabllity
zero in the solution set of state probabilities. For thls system, the
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"desirahle“ job comhinatlons are those'which Involve ¢ jobs, and at) other-
job combinations may he thought to be ‘'undeslrable’ because they have
probability zero in the solution set. The job comblnation in progress
defines the system state, and we may gain insights into why preemption
is not necessary by examining the mannér in which transitions between
states can occur. |If a desirable job combination is in service, the
system will be able to make a transition to another desirable state upon
the departure of a joE whenever the quéue is nonempty {i.e., whenever a
desirable job combination can be formed from the joBs In system). Likewise,
the arrival of a job to the system when an undesirable Jjob combination is _
in service will be immediately processed, and once agaln a transition wil) B
Occur to a desirable state if in fact a desirable state may be constructed -
using the job in system. _
It is a difficult task to dlscover other multi-resource queues for
which there exist full-capaclity disciplines which do not employ preemption,
and the material which appears below should be regarded as generalizations
based on the experieaces of the authors. The study of the Two CPU System
With Two Units of Memory suggested that a full-capacity discipline should
only process an undesirable Joblcomblnation (i.e., one having probability
zero in the solution set) when It is Impossible to construct a desirable
combination from the jobs in system. This conjecture, if valid, has rather
strong implications for a full-capacity discipline. If a desirable job
combination is being serviced and a departure occurs, it should be the case

for a full-capacity discipline that (a) the jobs from the combination which

still remain in system must themselves form a desirable combination, or

{b) another desirable jdb combination must HQ able to go into service if in
fact some-desirable job combination can be formed from the set of jobs in
system. o _

It seems 1ikely that the necessary and sufficlent condltions for
achieving full capacity without preemption are related to both the solution
set of state probabilities {which will not be unique In general) and the
manner in which transltions can occur between various system states (i.e.,
job combinations) undar the discipline. If we consider a discipline such

as the FCFS rule, it is apparent that the rule does not allow certaln state
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transitions which might be beneficial from the standpoiﬁt of system capacity.
The value of preemption in achieving full capacity lies in the ability to
make transitions, between any two system states which are conslstent with the
set of Jobs in system. One would expect that preemption is not necessary

for full capacity only if the transitions which can occur without preemption
are compatible in some sense with the “desirablé" states in one of the

solution sets of state probabilities for the system.

Notes on the Method of Analysis: An Example.

This paper summarizes results obtalned independently by the authors in
references [1] and [2); the total collection of results and the assoclated
derivations are extremely lengthy and wlll not be presented here. For
purposes of illustration, an abbreviated analysis will be givep for one of
the scheduling rules, the Preemptive Class-1 Static Priority rule.

For a majority of the scheduling disciplines an approach involving a
Semi-Markov process was used. Comparabie approaches were used by authors
such as Avi-ltzhak, Maxwell, and Miller [6] for treating single-server
queueing models, _

For the purpose of analysls, It is often sufficient to define system
states that are more gross than those needed for a detalled description
of the system at é point in time; the states, however, are so defined that
the state transition process {s Markovian. A particular result, for example
the expected flow time for Class-1 jobs, is synthesized by conglomerating
conditional results into an unconditional result by using the probabilities
of finding the system in various mutually exclusglve and exhaustive states.
A Poisson arrival finds the system in a particular state with the same
probability as the steady-state probabllity of the system being in that
particular state (see Strauch [7]). The_steady-state probabilities In turn
are obtained by using results from the theory of Semi-Markov processes [8].

In each model, for certain states the system is shown to be equivalent
to some other prevliously analyzed queueing system In some of its states.
This equivalence Is merely an operatlonal one, and [t [s always with reference
to a particular obJective set forth. The 'equivalence technique' is

advantageous since It allows a modular buildup of a complex system.
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The Preemptive Class-1 Static Priority disclpline has been chosen to
itlustrate this 'equivalence technique?; recall that this scheduling
discipline gives Class-1 Jobs preemptive priority over Class-2 jobs.
This rule is somewhat easier to analyze than the remaining disciplines
but nevertheless gives insights into the method of analysls. The compu-
tation of the expected flow time for Class-1 jobs is straightforward be-
-cause the system operation as viewed by Class~1 jobs appears to be that
of an M/M/2 queueing systém under the FCFS rule. The more interesting
problem is that of obtaining the expected flow time for Class-2 Jobs.

Using standard queuvelng terminology, some results for prevlodsly
analyzed systems are given below along with their defining parameters;
these results wil) be utilized by means of the 'equivalence technique'

mentioned earlier:

busy period of an M/G/1 system - Poisson input rate X, general
processing time P ‘

busy perlod of an M/M/2 system - Poisson input rate A, exponential
service rate u

delay cycle of an M/G/] system - Poisson input rate A, general
processing tlme P, and initlal delay period T0 (for a more

complete description, see reference [9], page 151)

The symbol '=' will be used to define equivalences between the defining
parameters glven above and other chosen guantities. The system states
of interest are shown below in Figure 6.

system has

a Class-1 ° no Class-1 Jobs no jobs of
Job arrives left In the system either class
I Process Class-1 jobs time
cnhly < -
sys.lsystem ' 4
b 1d1
Y tate (0) M ’L —L) 2 - Idle
L L : state
0 (0)

system state (1)

Figure 6a.
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a (lass-2 job system empty
arrives of all jobs
| time
SY5. system system
busy idle, L, idle, state (0)
state
(0) system state (2)

L0 : .
Figure 6b. .

For the purpose of finding the expected Class=2 flow time E(Fz), the

equivalences are defined as given below:

State (1) is equivalent to the state of an M/G/]1 system during a
delay cycle, with parametérs X = Az, P = P]-Z’ T0 = LI,I’

State (2) is equivalent to the state of an M/G/1 system during a
busy period, with parameters A=z AZ' P = P]-Z'
where P,_, Is the residence time for a Class-2 job as illustrated
in Figure 7 (for further explanation see reference [9], pages 163-173).
The intervals Ti ar; the busy perlodshof an M/M/2 system with Az 1] and
WEougs the number of times that they occur has a geometric distribution
with a complicated parameter. The first two moments of the random variable

P]-é are required, and these are easily obtained using some basic probabilistic

arquments.
job J
a Class-1
processing of a Class-1 job alrives completed
a Class-2 job, J, Job arrives, & pree pts’
15 started & preemp%s no no
Class-1 Job Class-1 jobs
; in the syst
Process] !N thesystemfp oo ystem

ci-1 jobs

ck-1 job

R

F s 1

residence time

Figure 7.
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A Class-2 job, when it arrives, will find the system either in state {(0),
state (1), or state (2).
Let, -

E(les) = Expected flow time for a Class-2 arrival which finds the

system in state-(s), where s = 0, 1, 2.
Using the system equivalencies defined earlier, we have

E(leo) = E(P]_Z)
| Wil el
E(Fp[1) = E(Py ) + S-LE(F, ) * TEM, T

2
E(P]igz
JTT-LER, T

E(lez) - E(PI—Z) + Z_Eﬁ]

For the purpose of finding the first two moments associated with L
system equivalence is,

1,1°

state (1,1) is equivalent to the state of a M/M/2 system

during a busy period, with parameters X = AI and p-=
Therefore, )

and

h(Z-kl/pl)
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Various substitutions would lead to the expressions for the conditional
expected flow times. These are then combined using the probabilities,

P(i), for finding the system in state i.
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E(L;)
E(Busy Cycte length)

Again using the same system equivalences as before,

and

By taking ratios, we get the respective probabilities P{i). Then, E(Fz)

E(L,) =
0 A]+12
AL 2
B = ey - i T8, 73 =X, T 7 iy |

) E(Pl_z) (1+A|fu])
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A A

E(Busy Period) = 1—':;— E(L]) + l_+§_ E(LZ)
172 172

E(Busy Cycle length) = E{Busy Period) + E{ldle Period),

(I+A]/u|)

The probability P(i) is simply

(}\]+Az) [T-A'/uI-AZTlﬂl/u])/uZ]

is obtained by

3
B(Fy) = 2 E(F,]1IP()
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The technique outlined above is a'powerfﬁl oné which is relatively
straightforward to apply. The éxperiénces of the authors in utilizing

this technique is that algebraic manipulations (note the cumbersome expression
for E(Fz)) cause some difficulties but that the technlque otherwise '
has a great deal of appeal.

Summarx

Basic dgfinitions and terminology have been given for a multi-resource
queue, a type of congestion system in which arriving jobs require the
simultaneous use of some combination of the system resources. Results
have been presented for a simple example of a multi-resource queue, the
Two CPU System With Two Units of Memory. These results illustrate that
multi-resource queues exhibit a behavior which Is counterintuitive in
many cases and in particular that a scheduling rule for such a system
must be concerned with the choice of a combination of jobs to be processed
concurrently and not merely the cholce of the next job to go into servrce
The manner in which a scheduling rule for a multi~-resource queue favors
the various job combinations has been shown to drastically affect both the
capacity and average flow times for jobs. it is the belief of the authors
‘that the properties of multi-resource queues may help to explain those
instances in which the usual single-resource queueing models inadequately

mode] the behavior of actual computer systems.
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