713 research outputs found
Recommended from our members
Constraining uncertainty in aerosol direct forcing
The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be attributed to uncertainty in the anthropogenic fraction of aerosol in the present-day atmosphere, due to a lack of historical observations. Here we present a robust relationship between total present-day aerosol optical depth and the anthropogenic contribution across three multi-model ensembles and a large single-model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a reduced likely range of the anthropogenic component and hence a reduced uncertainty in the direct forcing of aerosol
Stress corrosion in titanium alloys and other metallic materials
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC
Transport Properties of Random Walks on Scale-Free/Regular-Lattice Hybrid Networks
We study numerically the mean access times for random walks on hybrid
disordered structures formed by embedding scale-free networks into regular
lattices, considering different transition rates for steps across lattice bonds
() and across network shortcuts (). For fast shortcuts () and
low shortcut densities, traversal time data collapse onto an universal curve,
while a crossover behavior that can be related to the percolation threshold of
the scale-free network component is identified at higher shortcut densities, in
analogy to similar observations reported recently in Newman-Watts small-world
networks. Furthermore, we observe that random walk traversal times are larger
for networks with a higher degree of inhomogeneity in their shortcut
distribution, and we discuss access time distributions as functions of the
initial and final node degrees. These findings are relevant, in particular,
when considering the optimization of existing information networks by the
addition of a small number of fast shortcut connections.Comment: 8 pages, 6 figures; expanded discussions, added figures and
references. To appear in J Stat Phy
Recommended from our members
Quantification of ethyl acetate using FAIMS
The enjoyment of wine is based not only on its flavour but also its aroma. The presence of compounds, such as ethyl acetate, can add a desirable depth of body, richness and sweetness to a wine. However, if the levels exceed the human perception threshold (100 - 200 mg/l) an aroma similar to acetone becomes prevalent and the wine is regarded as spoilt.A study was undertaken to determine the concentration of ethyl acetate within wine using a Gas Chromatograph coupled with Field Asymmetric Ion Mobility Spectrometry (FAIMS).
The use of FAIMS (also known as Differential Mobility Spectrometry) as a selective detector has increasingly become prevalent within analytical science. There is now a vibrant community of researchers working with the technique and different commercial systems are readily available. Two such systems are the Tourist and Lonestar instruments available from Owlstone Ltd. The Owlstone systems are characterised by the sensor being a solid state device, which imposes constraints on operational parameters but also offers opportunities over comparable devices.
FAIMS technology requires the interaction of compounds both within the ionisation and separation region. To influence the interactions in these two regions studies were completed at elevated (compared to ambient) pressures and humidity. The study of ethyl acetate within wine provided an opportunity to investigate these effects and also provided a route for optimisation of the instrument for the study.
It was found, in contrast to a previously reported investigation, that increasing the pressure resulted in a greater resolution of compounds. A more complicated relationship was observed with respect to humidity, believed attributable to water being an important constituent of reactive and product ion formation. Additional effects due to the presence of co-solvents were observed and subsequently managed so as to provide increased sensitivity.
The quantification of ethyl acetate within wine was accomplished considerably below the human perception threshold providing the opportunity to better manage this multifarious compound throughout manufacture and the product lifecycle
Urbanization alters plastic responses in the common dandelion Taraxacum officinale
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations
Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20,
were investigated by neutron diffraction, magnetization, electric resistivity,
and magnetoresistance (MR) measurements. All samples show a rhombohedral
structure (space group R3c) from 10 K to room temperature. At room temperature,
the cell parameters a, c and the unit cell volume increase with increasing Ti
content. However, at 10 K, the cell parameter a has a maximum value for x =
0.10, and decreases for x greater than 0.10, while the unit cell volume remains
nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length
increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with
increasing Ti content to its minimum value at x=0.15 at room temperature. Below
the Curie temperature T_C, the resistance exhibits metallic behavior for the x
_ 0.05 samples. A metal (semiconductor) to insulator transition is observed for
the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples,
and shifts to a lower temperature as x increases. The substitution of Mn by Ti
decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth
W, and increases the electron-phonon coupling. Therefore, the TC shifts to a
lower temperature and the resistivity increases with increasing Ti content. A
field-induced shift of the resistivity maximum occurs at x less than or equal
to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The
separation of TC and the resistivity maximum temperature Tmax enhances the MR
effect in these compounds due to the weak coupling between the magnetic
ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil
What type of inhibition underpins performance on Luria's Fist-Edge-Palm task?
OBJECTIVE: The Fist-Edge-Palm task is a motor sequencing task believed to be sensitive to frontal lobe impairment. The present study aimed to investigate the inhibitory processes underlying successful execution of this task. METHOD: Seventy-two healthy participants were asked to perform the Fist-Edge-Palm task paced at 120 bpms, 60 bpms and self-paced. They also completed assessments sensitive to recently dissociated forms of inhibition (the Hayling Sentence Completion Test and the Stroop Color-Word Test) that have recently been shown to be differentially lateralized (the right and left Prefrontal Cortex, respectively), and Cattell's Culture Fair Intelligence test. RESULTS: Analysis revealed that performance on the Hayling Sentence Completion Test predicted the amount of crude errors and the overall score on the Fist-Edge-Palm task, and that pacing condition had no effect on this outcome. Neither the Stroop Color-Word Test nor Cattell's Culture Fair Intelligence Test predicted performance on the Fist-Edge-Palm task. CONCLUSIONS: Consistent with some previous neuroimaging findings, the present findings suggest that Fist-Edge-Palm task performance relies on right lateralized inhibitory processes
Structure, Magnetic, and Transport Properties of Ti-substituted La₀.₇Sr₀.₃MnO₃
Ti-substituted perovskites La0.7Sr0.3Mn1-xTixO3 with 0 ≤ x ≤ 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3c) from 10 K to room temperature. At room temperature, the cell parameters a,c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x \u3e 0.10, while the unit cell volume remains nearly constant for x \u3e 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x ≤ 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x ≥ 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x ≤ 0.10. The separation of TC and the resistivity maximum temperature Tp,max enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La0.7 Sr0.3MnO3
First light and reionization epoch simulations (FLARES) V : the redshift frontier
JWST is set to transform many areas of astronomy, one of the most exciting is the expansion of the redshift frontier to z > 10. In its first year, alone JWST should discover hundreds of galaxies, dwarfing the handful currently known. To prepare for these powerful observational constraints, we use the First Light And Reionization Epoch simulations (flares) to predict the physical and observational properties of the z > 10 population of galaxies accessible to JWST. This is the first time such predictions have been made using a hydrodynamical model validated at low redshift. Our predictions at z = 10 are broadly in agreement with current observational constraints on the far-UV luminosity function and UV continuum slope beta, though the observational uncertainties are large. We note tension with recent constraints z similar to 13 from Harikane et al. () - compared to these constraints, flares predicts objects with the same space density should have an order-of-magnitude lower luminosity, though this is mitigated slightly if dust attenuation is negligible in these systems. Our predictions suggest that in JWST's first cycle alone, around 600 galaxies should be identified at z > 10, with the first small samples available at z > 13.Peer reviewe
- …