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Ti-substituted perovskites La0.7Sr0.3Mn1−xTixO3 with 0øxø0.20, were investigated by neutron diffraction,
magnetization, electric resistivity, and magnetoresistancesMRd measurements. All samples show a rhombohe-

dral structuresspace groupR3̄cd from 10 K to room temperature. At room temperature, the cell parametersa,c
and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parametera has a
maximum value forx=0.10, and decreases forx.0.10, while the unit cell volume remains nearly constant for
x.0.10. The averagesMn,Tid-O bond length increases up tox=0.15, and thesMn,Tid-O-sMn,Tid bond angle
decreases with increasing Ti content to its minimum value atx=0.15 at room temperature. Below the Curie
temperatureTC, the resistance exhibits metallic behavior for thexø0.05 samples. A metalssemiconductord to
insulator transition is observed for thexù0.10 samples. A peak in resistivity appears belowTC for all samples,
and shifts to a lower temperature asx increases. The substitution of Mn by Ti decreases the 2p-3d hybridiza-
tion between O and Mn ions, reduces the bandwidthW, and increases the electron-phonon coupling. Therefore,
the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced
shift of the resistivity maximum occurs atxø0.10. The separation ofTC and the resistivity maximum tem-
peratureTr,max enhances the MR effect in these compounds due to the weak coupling between the magnetic
ordering and the resistivity as compared with La0.7Sr0.3MnO3.

DOI: 10.1103/PhysRevB.71.014433 PACS numberssd: 75.50.2y, 75.47.2m, 61.12.Ld, 61.10.2i

I. INTRODUCTION

The A1−xAx8MnO3 perovskites are interesting systems be-
cause of the anomalous magnetic and transport properties
exhibited by them such as colossal magnetoresistance
sCMRd, metal-insulator transitions, antiferromagnetic-
ferromagnetic ordering, and lattice dynamics associated with
phase transitions.1–8 Zener’s double exchangesDEd interac-
tion between Mn3+ and Mn4+ ions through charge carriers in
the oxygen 2p orbitals was introduced in order to explain the
coupling of magnetic and electronic properties in these
compounds.9–12 Undoped LaMnO3 is an A-type antiferro-
magnetic insulator. By substitution of La3+ with a divalent
cation, LaMnO3 can be driven into a metallic and ferromag-
netic state. Both Mn3+ and Mn4+ ions possess a local spin
sS=3/2d from their lowert2g

3 orbitals, and Mn3+ has an extra
electron in theeg orbital which is responsible for conduction.
The spin of theeg

1 electron in Mn3+ is ferromagnetically
coupled to the local spin oft2g

3 according to Hund’s rule. Sr
doping induces holes in theeg band near the Fermi energy,
producing mobile holes and conduction. However, recent
studies have shown that DE is not sufficient to explain the
complex physics in these compounds, especially with regard
to the lattice distortions coinciding with the emergence of
CMR.13,14 An understanding of the Sr-doped systems re-
quires one to consider both DE interactions in the Mn3+-O-
Mn4+ pairs and the strong electron-phonon coupling, includ-
ing lattice polarons and dynamic Jahn-TellersJTd
distortions.15,16 The polaron effect arising from JT distortion

was introduced to explain the electronic transport mechanism
in the high-temperature regionT<TC, where a strong
electron-phonon interaction is required to reduce the kinetic
energy of the conduction electrons. The local JT distortion of
the MnO6 octahedron lowers the energy of theeg

1 electron
and the charge carrier can then be localized to form a lattice
phonon. Therefore local lattice distortion aboveTC rapidly
decreases electron hopping, thus increasing the resistivity.14

Recently, it was found that polaron hopping was also the
dominant conduction mechanism belowTC.17–20A sharp in-
crease of polaron density at temperatures belowTC leads to a
charge carrier density collapse, which is related to the resis-
tivity peak and the CMR of doped manganites.21

In order to understand the unusual magnetic and transport
properties of doped perovskitesA1−xDxMnO3, many studies
have been carried out by doping the trivalent rare earth site
sA sited with divalent atomssCa, Sr, Ba, etcd.5,22–26 Other
studies have also shown that substitution for MnsB sited
dramatically affects the magnetic and transport properties of
perovskites.27–30 The B site modification has merit in that it
directly affects the Mn network by changing the Mn3+/Mn4+

ratio and the electron carrier density. Therefore in order to
better understand the role of Mn and its local environment in
La0.7Sr0.3MnO3, we studied the effects of replacing some of
the Mn with Ti. The structural, magnetic and electrical phase
transitions and transport properties of La0.7Sr0.3Mn1−xTixO3
with 0øxø0.20 have been investigated by neutron diffrac-
tion, magnetization, electric resistivity, and magnetoresis-
tance measurements and the results are presented here.
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II. EXPERIMENTAL

Samples of Ti-substituted La0.7Sr0.3Mn1−xTixO3, with
0øxø0.2, were prepared using the conventional solid state
reaction method. Highly purified La2O3, SrCO3, TiO2, MnO
were mixed in stoichiometric ratios, ground, and then pellet-
ized under 3000 psi pressure to a 1 cmdiameter. The pellet-
ized samples were fired at 1500 °C in air for 12 h, then
reground and sintered at 1250 °C for 24 h in air. X-ray dif-
fraction of the powders was carried out at room temperature
using a SCINTAG diffractometer with Cu-Ka radiation.
X-ray diffraction data indicated all samples to be single
phase. Powder neutron diffraction experiments were per-
formed at the University of Missouri–Columbia Research
Reactor sMURRd using neutrons of wavelengthl
=1.4875 Å. The data for each sample were collected be-
tween 2u=5.65–105.60° at 300 and 10 K. Refinement of the
neutron diffraction data was carried out using theFULLPROF

program,31 which permits multiple phase refinements as well
as magnetic structure refinements. Magnetic measurements
were conducted with a SQUID magnetometersMPMS,
Quantum designd. The magnetization curves with zero-field
cooling sZFCd and field coolingsFCd were measured in an
applied magnetic field of 50 Oe. Resistivity data were ob-
tained using a physical properties measurement system
sPPMS, Quantum designd with a standard four-point probe
method.

III. RESULTS AND DISCUSSION

Figure 1 shows the x-ray diffraction patterns of
La0.7Sr0.3Mn1−xTixO3 samples, with 0øxø0.2, at room tem-
peraturesRTd. All the samples are single phase and all peak
positions can be indexed to La0.67Sr0.33MnO2.91 sJCPDS 50-

0308d, space groupR3̄c. In order to investigate the details of

the structural distortion and the magnetic interactions in
these compounds, powder neutron diffraction measurements
were performed at different temperatures. Figure 2 shows the
neutron diffraction patterns of La0.7Sr0.3Mn1−xTixO3 with x
=0.0, x=0.03 and 0.20 measured at RT and 10 K. All pat-

terns can be fitted with theR3̄c rhombohedral space group
sNo. 167d in which the atomic positions are LasSrd:
6as0,0,1/4d, MnsTid: 6bs0,0,0d; O18esx,0 ,1 /4d. The P1
space group was used to fit the magnetic structure with col-
linear Mn magnetic moments because of its flexibility. Re-
fined structural and magnetic parameters are listed in Tables
I and II for RT and 10 K, respectively. For samples withx
ù0.10, there is no magnetic ordering at RT sinceTC,RT,
whereas for samples withxø0.10,TC.RT magnetic order-
ing is observed. The arrows on the neutron-diffraction pat-
terns of thex=0.0 samplesFig. 2d indicate magnetic reflec-

FIG. 1. X-ray diffraction patterns of La0.7Sr0.3Mn1−xTixO3

s0øxø0.20d at room temperature.

FIG. 2. Neutron-diffraction patterns of La0.7Sr0.3Mn1−xTixO3

sx=0.0, 0.03, and 0.20d at 10 K and RT.fThe bottom curves
sYobs-Ycald are the difference between experimental data and refine-
ment data. The vertical bars indicate the magneticsbottomd and
Bragg stopd peak positions.g Arrows indicate some of major mag-
netic diffraction peaks.
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tion peaks that are not present for thex=0.20 sample at RT.
The peak intensities of the magnetic reflections decrease
with Ti substitution at both RT and 10 K. In addition, the
refinement results confirm that the substituted Ti ions go into
B sites, not into A sites, because the ionic radius of
Ti4+ s0.605 Åd lies between the ionic radius of
Mn4+ s0.530 Åd and Mn3+ s0.645 Åd.32 The tolerance factor,
which is the geometric measure of size mismatch of perovs-
kites

t = sr sLa,Srd + rOd/fsr sMn,Tid + rOdÎ2g s1d

decreases linearly from 0.928 for La0.7Sr0.3MnO3 to 0.921
for La0.7Sr0.3Mn0.8Ti0.2O3, which is in the stable range of the
perovskite structure 0.89, t,1.02.26 Therefore, substitution
of Mn by Ti does not change the crystal structure itself but
changes the bond lengths and the bond angles of the MnO6
octahedra.

Figure 3 plots the lattice parametersa,c and the unit cell
volumes of La0.7Sr0.3Mn1−xTixO3 versus the TisTi4+d content
at room temperature and 10 K. The lattice parametersa,c
and the unit cell volume increase with the Ti content at RT.

At 10 K, the lattice parametera shows a maximum value at
x=0.10 and then decreases asx.0.10, and the unit cell vol-
ume increases up tox=0.10 and becomes almost constant for
x.0.10. The refined magnetic moments of the Mn atoms
indicate that Mn atoms have a high spin state, and the aver-
age valence state of the Mn varies from 3d3.5 to 3d3.3 for x
=0.0 andx=0.15, which suggests that the Ti atoms are in the
Ti4+ state. The values of the temperature factorB of oxygen
increase with increasing Ti content which is consistent with
the increase of the Mn-O bond length. This is likely related
to the structural disorder in the position of oxygen atoms due
to the substitution of Mn for Ti.

The averagesMn,Tid-O bond length andsMn,Tid-O-
sMn,Tid bond angle extracted from the Rietveld refinement at
RT and 10 K are shown in Fig. 4. The bond length of
La0.7Sr0.3Mn1−xTixO3 increases up tox=0.15 and remains
constant thereafter forxù0.15, while the bond angle de-
creases and attains an anomalous minimum value forx
=0.15 at RT. At 10 K, the bond length increases up tox
=0.10 and remains constant forx.0.10, while the bond
angle decreases with increasingx. The bond length and the
bond angle are closely related to the oxygen positions.

TABLE I. Refined parameters for La0.7Sr0.3Mn1−xTixO3 compound withR3̄c space group at room tem-
peraturesT=300 Kd. Numbers in parentheses are statistical errors.a and c are the lattice parameters.m is
magnetic moment.V is the unit cell volume.B is the isotropic temperature parameter.x2 is fRwp/Rexpg2 where
Rwp is the residual error of the weighted profile.

Composition 0.00 0.03 0.05 0.10 0.15 0.20

asÅd 5.5038s2d 5.5107s1d 5.5157s2d 5.5225s2d 5.5306s2d 5.5310s2d
csÅd 13.3553s5d 13.3635s4d 13.3699s5d 13.3845s5d 13.4032s6d 13.4124s6d
VsÅ3d 350.364s18d 351.445s16d 352.261s18d 353.508s21d 355.042s22d 355.341s23d
msmBd 2.514s28d 2.121s33d 1.022s63d 0.0 0.0 0.0

x2s%d 2.81 3.28 3.60 3.23 4.64 2.98

O, 18e,x 0.5422s2d 0.5437s2d 0.5448s2d 0.5460s2d 0.5469s2d 0.5461s2d
BsÅ2d, LasSrd, 6a 0.882s33d 0.8124s33d 0.873s35d 1.030s42d 0.975s43d 1.149s40d
BsÅ2d, MnsTid, 6b 0.423s54d 0.556s56d 0.574s59d 0.364s66d 0.394s67d 0.404s63d

BsÅ2d, O, 18e 1.221s25d 1.248s25d 1.306s27d 1.501s37d 1.475s37d 1.586s35d

TABLE II. Refined parameters for La0.7Sr0.3Mn1−xTixO3 compound with theR3̄c space group at low
temperaturesT=10 Kd. Numbers in parentheses are statistical errors.a andc are the lattice parameters.m is
magnetic moment.V is the unit cell volume.B is the isotropic temperature parameter.x2 is fRwp/Rexpg2 where
Rwp is the residual error of the weighted profile.

Composition 0.00 0.03 0.05 0.10 0.15 0.20

asÅd 5.4811s1d 5.4940s1d 5.4989s1d 5.5116s1d 5.5089s2d 5.5053s3d
csÅd 13.2756s3d 13.3037s4d 13.3137s4d 13.3354s4d 13.3421s6d 13.3746s10d
VsÅ3d 345.397s13d 347.756s14d 348.644s16d 350.820s15d 350.652s22d 351.056s35d
msmBd 3.443s25d 3.461s27d 3.506s32d 3.422s28d 3.282s36d 2.913s51d
x2s%d 3.23 3.51 2.89 2.69 3.72 4.90

O, 18e,x 0.5431s1d 0.5442s2d 0.5448s1d 0.5467s1d 0.5469s2d 0.5472s2d
BsÅ2d, LasSrd, 6a 0.167s26d 0.240s28d 0.302s33d 0.318s28d 0.449s37d 0.269s48d
BsÅ2d, MnsTid, 6b 0.127s45d 0.230s49d 0.271s57d 0.169s47d 0.291s62d 0.174s81d

BsÅ2d, O, 18e 0.328s21d 0.536s23d 0.595s27d 0.649s22d 0.926s28d 0.945s36d
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Therefore, an increasingsMn-Tid-O bond length and a de-
creasingsMn,Tid-O-sMn,Tid bond angle are strongly corre-
lated. The changes in bond length and bond angle of MnO6
compensate one another to diminish the internal strain in-
duced by Ti4+. Since the exchange interaction between
Mn-Mn depends on both the bond angle and the bond dis-
tance, the decrease in bond angle and the increase in bond
length decrease the Mn-Mn exchange interaction which leads
to a lower magnetic ordering temperatureTC ssee later dis-
cussion ofM-T curvesd.

The electronic bandwidthW has been used to discuss
magnetic and transport properties of perovskites with varied
A-site doping.16,33The empirical formula of the bandwidthW
for ABO3-type perovskites using the tight binding
approximation24 is

W~
cosv

sdMn-Od3.5, s2d

where v= 1
2sp−kMn-O-Mnld and dMn-O is the Mn-O bond

length. The calculated values of cosv / sdMn-Od3.5 using the
refinement results are shown in Fig. 4scd. We assumed the
bandwidth W is proportional to the values of
cosv / sdMn-Od3.5. It is found that the bandwidthW decreases
with increasing Ti content. Further, the bandwidth at RT is
smaller than the bandwidth at 10 K for a given Ti content.
The evolution of the bandwidth follows the change in the
kMn-O-Mnl bond angle. The decrease in bandwidth reduces
the overlap between the O-2p and the Mn-3d orbitals, which
in turn decreases the exchange coupling of Mn3+-Mn4+, and

the magnetic ordering temperatureTC as well. For a charge-
transfer insulator, the band gap energyEg in the insulating
phase can be written asEg=D−W, whereD is the charge-
transfer energy andW is the O-2p-like bandwidth. In prac-
tice, D changes little in the La1−xSrxMnO3 system and thus
the bandwidthW becomes a main factor in tuning the band
gap energy.34 For the La0.7Sr0.3Mn1−xTixO3 compounds, the
decrease in bandwidthW increases the band gapEg and leads
to the metal to insulator transition forx.0.10.

Figure 5 shows the magnetization versus temperature
sM-Td curves measured under field-cooledsFCd and zero
field-cooledsZFCd conditions in a magnetic field of 50 Oe
for the x=0.05, 0.10, and 0.15 samples. A sharp paramag-

FIG. 4. AveragesMn,Tid-O bond lengthssad, sMn,Tid-O-sMn,Tid
bond angles sbd, and electronic bandwidth parameter
cosv / sdMn-Od3.5 scd of La0.7Sr0.3Mn1−xTixO3 at room temperature
and at 10 K.

FIG. 3. Lattice parameter a,c, and volume of
La0.7Sr0.3Mn1−xTixO3 versus Ti content at room temperature and at
10 K.

FIG. 5. The magnetization versus temperaturesM-Td curves of
La0.7Sr0.3Mn1−xTixO3 sx=0.05,0.10,0.15d measured under field
cooling sFCd and zero field coolingsZFCd conditions in a magnetic
field of 50 Oe.
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netic to ferromagnetic transition is observed at a critical tem-
peratureTC. Figure 6 shows the Curie temperaturesTC of
La0.7Sr0.3Mn1−xTixO3 for differing Ti content. The decrease
in TC is obviously related to the changes in bandwidth as
seen in Fig. 4scd. TheTC drops at a rate of about 10 K per Ti.
l-shaped magnetization curves in ZFC emerge forxù0.10
samples. The existence ofl-shaped curves under ZFC may
be evidence of the formation of ferromagnetic clusters with a
spin glass state. The Ti substitution weakens the exchange
interaction and breaks the Mn-O-Mn network, and creates
short range ordered ferromagnetic clusters. As more Ti is
substituted, more inhomogeneous clusters are formed, which
leads to a broadening of the paramagnetic to ferromagnetic
phase transition peak. A similar phenomenon has been ob-
served in the La0.7Ca0.3Mn1−xTixO3 system.26

Magnetization versus field sM-Hd curves of
La0.7Sr0.3Mn1−xTixO3 at different temperatures are plotted in
Fig. 7. At 20 K, all samples reach a nearly constant value of
magnetization under a fieldH=0.6 T. The estimated mag-
netic moments of thex=0.0, 0.05, 0.10, and 0.15 samples
from magnetization data at 20 K are 3.79, 3.54, 3.24, and
2.49mB per Mn atom, respectively. These moment values are
in good agreement with the neutron diffraction refinement
resultsssee Table IId. The theoretically estimated magnetic
moments of Mn from its valence state taking into account the
dilution effect of Ti4+, are 3.70, 3.55, 3.40, and 3.35mB,
respectively. This suggests that the decrease of magnetization
with increasing Ti content is not only due to the dilution of
magnetic Mn4+ atoms but also due to the weakening of ex-
change coupling by the cluster formation.

Figure 8 shows the resistivity as a function of temperature
under different applied fields for La0.7Sr0.3Mn1−xTixO3 com-
pounds withx=0.0, 0.05, 0.10, and 0.15. In the temperature
range 4–300 K, the resistivity of the samples increases as the
Ti content increases. The resistivity of 0.05øxø0.10 shows
a maximum value at temperatureTr,max below TC, and then
decreases as the temperature decreases. Finally the resistivity
increases again asT decreases further forxù0.10. The dif-
ference betweenTC andTr,max becomes larger as the Ti con-
tent increases andTr,max is lower thanTC. This behavior is
quite different from that observed in the Ti-substituted
La0.7Ca0.3Mn1−xTixO3 series which exhibit large differences
betweenTC and Tr,max sRef. 25d and Tr,max is higher than

TC.26 For the xø0.15 sample, a metalssemiconductord to
insulator transitionsMIT d appears in the low-temperature re-
gion. The field-induced shift of maximum resistivity to
higher temperature appears for thexø0.10 samples, and be-
comes negligible forxù0.15. The suppression of the resis-
tivity by the applied magnetic field occurs over the entire
temperature range for all samples. AtT.TC, the suppression
of the resistivity becomes weaker. According to the DE
mechanism, the mobility of the charge carrierseg electrons
improves if the localized spins are polarized. The applied
field aligns the canted electron spins which should reduce the
scattering of itinerant electrons with spins and thus the resis-
tivity is reduced. Therefore an applied magnetic field com-
petes with the thermal fluctuations and maintains magnetic
ordering aroundTC for the xø0.10 samples, and thus shifts
the Tr,max to higher temperatures.

Figure 9 shows the typical temperature dependence of the
magnetoresistance fMR=sr0−rHd /r03100g of
La0.7Sr0.3Mn1−xTixO3 samples with 0øxø0.20 under an ap-
plied field of 1 and 3 T. The maximum magnetoresistance
increases with increasing Ti concentration. For example, the
maximum MR values are 30, 55 % under 3 T forx=0.05,
0.15, respectively. The temperature of the MR peak shifts to
a lower temperature, approximately 15 K per Ti. It is known
that in A-site electron-dopedA1−xAx8MnO3sx=0.3d com-
pounds, the metal-insulator transition temperatureTMI coin-
cides with the TC, and the metal-insulator transition is
strongly coupled with the magnetic ordering transition.
Therefore, a strong variation of the electrical resistivity up to
several orders of magnitude, namely, the colossal magnetore-
sistancesCMRd effect, occurs upon application of a magnetic
field near TC. However, for La0.7Sr0.3Mn1−xTixO3 com-
pounds, theTC is different than from the metal to insulator
transition temperature. The application of a magnetic field
has much more effect on the change of electric resistivity
when compared to La0.7Sr0.3MnO3 due to the weak coupling
between the MIT and the magnetic ordering. An enhance-
ment of the MR effect is observed in these compounds, simi-
lar to that in La0.7Ca0.3Mn1−xTixO3 sRefs. 25 and 26d and
Pr1−xsCa,SrdxMnO3 compounds.35

The change of the electronic properties of Ti-substituted
La0.7Ca0.3Mn1−xTixO3 compounds is strongly related to the
electron phonon coupling.14 Accordingly, in the
La1−xSrxMnO3 system, the strong electron-phonon coupling
localizes the conduction band electron as a polaron, due to

FIG. 6. The Curie temperaturesTCd, and the temperature of
maximum resistivitysTr,maxd of La0.7Sr0.3Mn1−xTixO3 compounds
with 0øxø0.20.

FIG. 7. Field-dependent magnetization of
La0.7Sr0.3Mn1−xTixO3 s0øxø0.20d at different temperatures.
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the competition between the self-trapping energyEJ,T and the
electron itinerant energy. The electron-phonon coupling con-
stant l=EJ,T/ t, where t is the electron hopping parameter
which is proportional to the electronic bandwidthW. As
mentioned above, the substitution of Mn by Ti decreases the
overlap of the O-2p and Mn-3d orbitals due to the decrease
in W, thus increasing the electron-phonon coupling. This re-
sults in a shift ofTC to lower temperatures and an increase of
resistivity with increasing Ti content. As a consequence, one
should consider a possible dependence ofEJ,T on Ti content.
We cannot rule out the contribution fromEJ,T, even though
our data indicate that all the observedTC and resistivity
changes can be explained, at least qualitatively, by the
change inW. Especially, forxù0.15, the electron-phonon
coupling becomes very strong, and the insulator behavior
occurs belowTC as shown in Fig. 8. The changes in band-
width W are not large enough to account for the dramatic
changes in resistivity, and therefore,EJ,T might be contribut-
ing significantly to the change of resistivity in these samples.

It has been proposed that, aboveTC, charge may be local-
ized in the form of JT polarons.21 At TùTC, the resistivity of

the CMR materials can be explained by the activated adia-
batic polaron equation36

r = ATexpsEhop/kTd. s3d

Figure 10 shows the plot of lnsr /Td as a function of 1/T
for La0.7Sr0.3Mn1−xTixO3 compounds withx=0.00, 0.05,
0.10, 0.15, and 0.20 in the high-temperature region with zero
field resistivity data. Resistivity of all the samples shows a
similar slope atTùTC, which can be fitted well with the
small polaron model indicating the formation of a polaron.
The polaron hopping energyEhop is calculated from the
slopes. The calculated values ofEhop are 14.5 49.8, 132.0,

FIG. 8. Electric resistivity r versus temperature for
La0.7Sr0.3Mn1−xTixO3 compoundsfx=0.0 sad, 0.05sbd, 0.10scd, and
0.15 sddg in applied magnetic fieldH=0, 1, 3, and 5 T. Arrows
indicate theTr,max. The inset insdd is the plot of resistivity ofx
=0.15 compoundswith log scaled in H=0 T.

FIG. 9. Temperature dependence of magnetoresistance of
La0.7Sr0.3Mn1−xTixO3 s0øxø0.20d compounds in the magnetic
field of H=1,3 T.
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138.3, and 152.5 meV forx=0.00, 0.05, 0.10, 0.15, and 0.20,
respectively. The increase ofEhop is due to the substitution of
Mn by Ti which depletes the oxygenp holes and leads to an
increase in the polaron binding energy. This further confirms
that Ti substitution at Mn enhances the electron-phonon in-
teraction, which decreasesW and increasesEhop at high tem-
peratures. The calculated polaron hopping energy shows a
large variation between thex=0.05 and thexù0.10 samples.
This is in good agreement with the sharp increase in resis-
tivity and its temperature dependence. Some studies have
also suggested that polaron hopping is the prevalent mecha-
nism to explain resistivity belowTC.37–39However, we were
unable to fit the resistivity data of the Ti-doped
La0.7Sr0.3MnO3 samples belowTC with several other polaron
models such as the semiconducting model,40 the variable

range hoppingsVHRd polaron model,41 and the adiabatic po-
laron hopping model. Only the VHR polaron model works
reasonably well for the low temperature regionT,75 K, for
the insulating state,x=0.10 sample. There may be other con-
tributions, such as ferromagnetic clusters, which would in-
crease the resistivity of the compound.

IV. SUMMARY

The magnetic and electronic transport properties of Ti-
substituted La0.7Sr0.3Mn1−xTixO3 have been systematically
investigated. All the Ti-substituted La0.7Sr0.3Mn1−xTixO3
compositions have a rhombohedral structuresspace group
R3̄cd. The correlation between ferromagneticTC and Tr,max
becomes weaker and spin glass clusters are expected in the
low-temperature region with increasing Ti substitution. The
resistivity in the high-temperature region suggests the forma-
tion of localized polarons that affect the strong correlation
between local structural changes and the MIT. The decrease
of the bandwidthW decreases the overlap between the O-
2p and Mn-3d orbitals, which in turn decreases the exchange
coupling of Mn-Mn and the magnetic ordering temperature
Tc as well. Our studies indicate that Ti substitution at Mn
enhances the electron-phonon interaction in these com-
pounds, which decreases the bandwidth and increases the
resistivities in the entire temperature range.
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