1,428 research outputs found
High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates
We present high-speed photometric observations of ZZ Ceti white dwarf
candidates drawn from the spectroscopic survey of bright DA stars from the
Villanova White Dwarf Catalog by Gianninas et al., and from the recent
spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et
al. We report the discovery of six new ZZ Ceti pulsators from these surveys,
and several photometrically constant DA white dwarfs, which we then use to
refine the location of the ZZ Ceti instability strip.Comment: 4 pages, 1 table, 2 figures, to appear in "19th European White Dwarf
Workshop" in the ASP Conference Serie
The impact of, and views on, school food intervention and policy in young people aged 11-18 years in Europe: a mixed methods systematic review
Understanding the social and environmental influencers of eating behaviours has the potential to improve health outcomes for young people. This review aims to explore the effectiveness of school nutrition interventions and the perceptions of young people experiencing a nutrition focused intervention or change in school food policy. A comprehensive systematic search identified studies published between 1 December 2007 to 20 February 2020. Twenty‐seven studies were included: 22 quantitative studies of nutrition related outcomes and five qualitative studies reporting views and perceptions of young people (combined sample of 22,138 participants, mean ages 12–18 years). The primary outcome was nutrition knowledge/dietary behaviours, with secondary outcomes exploring body mass index (BMI) and wellbeing. Due to the heterogeneity of studies, a narrative results description is presented. The findings demonstrate that school nutrition programmes can be effective in reducing sugar, sugar sweetened beverages (SSB) and saturated fat and increasing fruit and vegetable (FV) intake. The lived experiences of young people in a school context provide valuable insights that should be considered in the development of effective school food policy and interventions. This review affirms the significant role that schools can play in supporting good nutrition in all young people and provides opportunities to inform the school food agenda
Capacity Value of Wind Power
Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given
Mg(, )Na reaction study for spectroscopy of Na
The Mg(, )Na reaction was measured at the Holifield
Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to
better constrain spins and parities of energy levels in Na for the
astrophysically important F()Ne reaction rate
calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched
Mg solid targets were used. Recoiling He particles from the
Mg(, )Na reaction were detected by a highly segmented
silicon detector array which measured the yields of He particles over a
range of angles simultaneously. A new level at 6661 5 keV was observed in
the present work. The extracted angular distributions for the first four levels
of Na and Distorted Wave Born Approximation (DWBA) calculations were
compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference
on Accelerators and Beam Utilization (ICABU2014
Key Ne states identified affecting -ray emission from F in novae
Detection of nuclear-decay rays provides a sensitive thermometer of
nova nucleosynthesis. The most intense -ray flux is thought to be
annihilation radiation from the decay of F, which is destroyed
prior to decay by the F(,)O reaction. Estimates of
F production had been uncertain, however, because key near-threshold
levels in the compound nucleus, Ne, had yet to be identified. This
Letter reports the first measurement of the
F(He,)Ne reaction, in which the placement of two
long-sought 3/2 levels is suggested via triton--
coincidences. The precise determination of their resonance energies reduces the
upper limit of the rate by a factor of at nova temperatures and
reduces the average uncertainty on the nova detection probability by a factor
of 2.1.Comment: 6 pages, 4 figure
New -ray Transitions Observed in Ne with Implications for the O(,)Ne Reaction Rate
The O(,)Ne reaction is responsible for breakout
from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of
resonances between and 5 MeV in Ne is crucial in the
calculation of this reaction rate. The spins and parities of these states are
well known, with the exception of the 4.14- and 4.20-MeV states, which have
adopted spin-parities of 9/2 and 7/2, respectively. Gamma-ray
transitions from these states were studied using triton--
coincidences from the F(He,)Ne reaction measured
with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure
Studies) at Argonne National Laboratory. The observed transitions from the
4.14- and 4.20-MeV states provide strong evidence that the values are
actually 7/2 and 9/2, respectively. These assignments are consistent
with the values in the F mirror nucleus and in contrast to previously
accepted assignments
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
Recent direct reaction experimental studies with radioactive tin beams
Direct reaction techniques are powerful tools to study the single-particle
nature of nuclei. Performing direct reactions on short-lived nuclei requires
radioactive ion beams produced either via fragmentation or the Isotope
Separation OnLine (ISOL) method. Some of the most interesting regions to study
with direct reactions are close to the magic numbers where changes in shell
structure can be tracked. These changes can impact the final abundances of
explosive nucleosynthesis. The structure of the chain of tin isotopes is
strongly influenced by the Z=50 proton shell closure, as well as the neutron
shell closures lying in the neutron-rich, N=82, and neutron-deficient, N=50,
regions. Here we present two examples of direct reactions on exotic tin
isotopes. The first uses a one-neutron transfer reaction and a low-energy
reaccelerated ISOL beam to study states in 131Sn from across the N=82 shell
closure. The second example utilizes a one-neutron knockout reaction on
fragmentation beams of neutron-deficient 106,108Sn. In both cases, measurements
of gamma rays in coincidence with charged particles proved to be invaluable.Comment: 11 pages, 5 figures, Zakopane Conference on Nuclear Physics "Extremes
of the Nuclear Landscape", Zakopane, Poland, August 31 - September 7, 201
- …