407 research outputs found
Regulation of auditory plasticity during critical periods and following hearing loss
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway and serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss induced plasticity with brain changes observed as part of tinnitus should advance strategies to treat tinnitus by molecularly modulating plasticity
Very late-onset neuromyelitis optica spectrum disorder beyond the age of 75
Aquaporin-4 antibody (AQP4-Ab)-positive neuromyelitis optica spectrum disorder (NMOSD) is a rare but often severe autoimmune disease with median onset around 40Â years of age. We report characteristics of three very-late-onset NMOSD (including complete NMO) patients >75Â years of age, in whom this diagnosis initially seemed unlikely because of their age and age-associated concomitant diseases, and briefly review the literature. All three patients, aged 79, 82 and 88 years, presented with a spinal cord syndrome as the first clinical manifestation of AQP4-Ab-positive NMOSD. They all had severe relapses unless immunosuppressive therapy was initiated, and one untreated patient died of a fatal NMOSD course. Two patients developed side effects of immunosuppression. We conclude that a first manifestation of NMOSD should be considered even in patients beyond the age of 75 years with a compatible syndrome, especially longitudinally extensive myelitis. Early diagnosis and treatment are feasible and highly relevant. Special attention is warranted in the elderly to recognize adverse effects of immunosuppressive therapies as early as possible
Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''
We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future
Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''
We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future
Pygmy dipole resonance in 208Pb
Scattering of protons of several hundred MeV is a promising new spectroscopic
tool for the study of electric dipole strength in nuclei. A case study of 208Pb
shows that at very forward angles J^pi = 1- states are strongly populated via
Coulomb excitation. A separation from nuclear excitation of other modes is
achieved by a multipole decomposition analysis of the experimental cross
sections based on theoretical angular distributions calculated within the
quasiparticle-phonon model. The B(E1) transition strength distribution is
extracted for excitation energies up to 9 MeV, i.e., in the region of the
so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows
sensitivity to the underlying structure of the E1 transitions, which allows for
the first time an experimental extraction of the electromagnetic transition
strength and the energy centroid of the PDR.Comment: submitted to Phys. Rev.
Complete electric dipole response and the neutron skin in 208Pb
A benchmark experiment on 208Pb shows that polarized proton inelastic
scattering at very forward angles including 0{\deg} is a powerful tool for
high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1)
modes in nuclei over a broad excitation energy range to test up-to-date nuclear
models. The extracted E1 polarizability leads to a neutron skin thickness
r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys.
Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its
density dependence, relevant to the description of neutron stars.Comment: 5 pages, 5 figures, revised mansucrip
Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs
Dipole polarizability of 120Sn and nuclear energy density functionals
The electric dipole strength distribution in 120Sn between 5 and 22 MeV has
been determined at RCNP Osaka from a polarization transfer analysis of proton
inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}.
Combined with photoabsorption data an electric dipole polarizability
\alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as
isovector observable par excellence carries direct information on the nuclear
symmetry energy and its density dependence. The correlation of the new value
with the well established \alpha_D(208Pb) serves as a test of its prediction by
nuclear energy density functionals (EDFs). Models based on modern Skyrme
interactions describe the data fairly well while most calculations based on
relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure
Low-energy electric dipole response in 120Sn
The electric dipole strength in 120Sn has been extracted from proton
inelastic scattering experiments at E_p = 295 MeV and at forward angles
including 0 degree. Below neutron threshoild it differs from the results of a
120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV.
The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and
is more than three times larger than what is observed with the (gamma,gamma')
reaction. This implies a strong fragmentation of the E1 strength and/or small
ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure
Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation
Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing
- …