128 research outputs found

    On the aerosol weekly cycle spatiotemporal variability over Europe

    Get PDF
    In this work, we focus on the spatial and temporal variability of the aerosol weekly cycle over Europe as these were recorded from TERRA MODIS and AQUA MODIS satellite instruments. Aerosol optical properties retrieved from MODIS TERRA (February 2000–February 2009) and AQUA (July 2002–December 2008) were used to produce an aerosol weekly cycle index. First, the general aerosol optical depth (AOD<sub>550 nm</sub>) weekly patterns were defined at a 1° × 1° resolution using the satellite-based index and six regions of interest were selected. To remove episodic dust transport events, two different aerosol flags, employing fine mode ratio (FMR<sub>550 nm</sub>) and AOD<sub>550 nm</sub> data, were applied diagnostically, showing that the observed weekly cycles over Europe are due to continental aerosols. A second spatial averaging method was then used for the investigation of the weekly variability and the statistical significance of the weekly cycle over each of the previously selected regions. Three major weekly cycle plumes are observed over Europe. A strong positive (higher values during midweek) weekly cycle plume appears over Central Europe, while a strong negative (higher values during weekend) weekly plume appears over the Iberian Peninsula and the North-eastern Europe. The temporal examination of the weekly cycles shows that in some areas there are seasonal differences in the sign of the weekly cycle. The aerosol weekly variability over different regions in Europe was examined in conjunction with the dominating synoptic wind patterns from the NCEP/NCAR reanalysis, showing that the seasonal weekly cycle plumes over regions situated in the eastern Europe and the Mediterranean Sea could be partly attributed to the westerly transport of continental aerosols

    Effects of methane outgassing on the Black Sea atmosphere

    No full text
    International audienceMethane in air and seawater was measured in the Eastern Black Sea during the 10?18 December 1999 BIGBLACK project cruise. The measurements allowed for the calculation of supersaturation ratios and methane fluxes across the air-sea interface. CH4 mixing ratios in air were generally in the 1.8?2.0 ppmv range, while surface (4 m depth) seawater concentrations varied from 5 to 100 ppmv. Above active seep areas, the water was supersaturated at around 500% with respect to the overlying atmosphere. Accordingly, flux densities varied greatly and were up to 4000 umol m-2 day-1. In the Sevastopol harbour, supersaturations up to around 3000%, similar to those at the Danube Delta, were observed, while in the Istanbul harbour supersaturations could not be determined because the very high values of water concentrations have led to detector saturation. Simple modelling shows that the observed fluxes do not have any substantial impact in the methane content of the Black Sea atmosphere, as they could only raise its concentrations by less than 1 ppb. On the other hand, calculations performed as part of the CRIMEA project, show that mud volcano eruptions could episodically raise the methane concentrations well above their regional background for several tens of kilometres downwind

    Investigation of catalytic reduction and filter techniques for simultaneous measurements of NO, NO2, and HNO3 in the stratosphere

    Get PDF
    A concept for measuring stratospheric NOy-species is presented which utilizes the catalytic reduction of NO2 and HNO3 over heated metal catalysts and the chemisorption of HNO3 on Nylon. Using the Max Planck Institute for Aeronomy (MPAE) chemiluminescent balloon-borne sonde, stratospheric NO and NO2 profiles have been measured since 1983. NO is detected by chemiluminescence produced in reaction with O3 while NO2 needs first to be converted to NO over a heated stainless steel catalyst. To improve this technique for simultaneously measuring HNO3, the catalytic reduction of NO2 and HNO3 over several metal catalysts and the chemisorption of NO2 and HNO3 on Nylon have been investigated in laboratory tests. The results of these tests under simulated stratospheric conditions are presented in detail in this paper. They demonstrate that the simultaneous measurement of NO, NO2 and HNO3 is indeed possible with the combination of stainless steel or Au as a catalyst and a nylon filter

    Dynamic Response of Face Symmetrical Hardfill Dams (FSHD)

    Get PDF
    94 σ.Αναλύεται η δυναμική συμπεριφόρα ένος σχετικά νέου είδους φράγματος, του (κακώς) ονομαζόμενου «Αξονοσυμμετρικού» Φράγματος Σκληρού Επιχώματος, δηλαδή ενός επιχώματος με ίδιες κλίσεις στα δύο πρανή. Αρχικά εξηγούμε τα χαρακτηριστικά αυτού του φράγματος και έπειτα παρουσιάζουμε το θεωρητικό υπόβαθρο για να επαληθεύσουμε τα αποτελέσματα της ανάλυσης. Τέλος δείχνουμε τα αποτελέσματα των αναλύσεων που έγιναν με πεπερασμένα στοιχεία. Το κύριο συμπέρασμα είναι ότι ακόμη και με υπό μετρίως ισχυρή σεισμική διέγερση οι αναπτυσσόμενες επιταχύνσεις στην κορυφή του φράγματος είναι πολύ μεγάλες, με αποτέλεσμα η δημιουργία επικίνδυνων εφελκυστικών ρωγμών να είναι αναπόφευκτη.Analyze the dynamic behavior of a relatively new type of dam, the (wrong) so-called "axisymmetric" Hardfill dam, ie a hardfill dam with the same slopes. FIrstly we explain the characteristics of this dam and then we present the theoretical background to verify the assay results. Finally we show the results of the analyses which were made by finite elements. The main conclusion is that even under moderately strong earthquake motions, the developing seismic accelerations at the top of the dam is very large, resulting in dangerous tensile cracks to be unavoidable.Αριστείδης Κ. Κουρτίδη

    Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean

    Get PDF
    This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations

    Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    Get PDF
    We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007-December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.Peer reviewe

    Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations

    Get PDF
    Understanding long-term variations in aerosol loading is essential for evaluating the health and climate effects of airborne particulates as well as the effectiveness of pollution control policies. The expected satellite lifetime is about 10 to 15 years. Therefore, to study the variations of atmospheric constituents over longer periods information from different satellites must be utilized.Here we introduce a method to construct a combined annual and seasonal long time series of AOD at 550 nm using the Along-Track Scanning Radiometers (ATSR: ATSR-2 and AATSR combined) and the MODerate resolution Imaging Spectroradiometer on Terra (MODIS/Terra), which together cover the 1995–2017 period. The long-term (1995–2017) combined AOD time series are presented for all of mainland China, for southeastern (SE) China and for 10 selected regions in China. Linear regression was applied to the combined AOD time series constructed for individual L3 (1°&thinsp; × &thinsp;1°) pixels to estimate the AOD tendencies for two periods: 1995–2006 (P1) and 2011–2017 (P2), with respect to the changes in the emission reduction policies in China.During P1, the annually averaged AOD increased by 0.006 (or 2&thinsp;% of the AOD averaged over the corresponding period) per year across all of mainland China, reflecting increasing emissions due to rapid economic development. In SE China, the annual AOD positive tendency in 1995–2006 was 0.014 (3&thinsp;%) per year, reaching maxima (0.020, or 4&thinsp;%, per year) in Shanghai and the Pearl River Delta regions. After 2011, during P2, AOD tendencies reversed across most of China with the annually averaged AOD decreasing by −0.015 (−6&thinsp;%) per year in response to the effective reduction of the anthropogenic emissions of primary aerosols, SO2 and NOx. The strongest AOD decreases were observed in the Chengdu (−0.045, or −8&thinsp;%, per year) and Zhengzhou (−0.046, or −9&thinsp;%, per year) areas, while over the North China Plain and coastal areas the AOD decrease was lower than −0.03 (approximately −6&thinsp;%) per year. In the less populated areas the AOD decrease was small.The AOD tendency varied by both season and region. The increase in the annually averaged AOD during P1 was mainly due to an increase in summer and autumn in SE China (0.020, or 4&thinsp;%, and 0.016, or 4&thinsp;%, per year, respectively), while during winter and spring the AOD actually decreased over most of China. The AOD negative tendencies during the 2011–2017 period were larger in summer than in other seasons over the whole of China (ca. −0.021, or −7&thinsp;%, per year) and over SE China (ca. −0.048, or −9&thinsp;%, per year).The long-term AOD variations presented here show a gradual decrease in the AOD after 2011 with an average reduction of 30&thinsp;%–50&thinsp;% between 2011 and 2017. The effect is more visible in the highly populated and industrialized regions in SE China, as expected.</p

    A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations

    Get PDF
    The MACC reanalysis dust product is evaluated over Europe, northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550nm (DOD550) data are compared against LIVAS DOD532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1kma.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550nm are compared against dust extinction coefficient profiles at 532nm from LIVAS, assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD550 patterns are close to the LIVAS DOD532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds  ∼ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 ( ∼ 25%) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over northern Africa and the Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000ma.s.l., layer 2: 3000–4800ma.s.l., layer 3: 4800–6600m a.s.l. and layer 4: 6600–8400ma.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first three layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (the Sahara and Middle East) it underestimates strongly only for heights below  ∼ 3–5kma.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9kma.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system
    corecore