1,501 research outputs found

    Peak effect and dynamic melting of vortex matter in NbSe2_2 crystals

    Get PDF
    We present a mode locking (ML) phenomenon of vortex matter observed around the peak effect regime of 2H-NbSe2_2 pure single crystals. The ML features allow us not only to trace how the shear rigidity of driven vortices persists on approaching the second critical field, but also to demonstrate a dynamic melting transition of driven vortices at a given velocity. We observe the velocity dependent melting signatures in the peak effect regime, which reveal a crossover between the disorder-induced transition at small velocity and the thermally induced transition at large velocity. This uncovers the relationship between the peak effect and the thermal melting.Comment: To appear in Physical Review Lette

    The dynamics of spiral arms in pure stellar disks

    Full text link
    It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional NN-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3×1063\times 10^6, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's QQ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of QQ, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3×1053\times 10^5, spiral arms grow faster in the beginning of the simulation (while QQ is small) and they cause a rapid increase of QQ. As a result, the spiral arms become faint in several Gyrs.Comment: 18 pages, 19 figures, accepted for Ap

    Dynamic ordering of driven vortex matter in the peak effect regime of amorphous MoGe films and 2H-NbSe2 crystals

    Get PDF
    Dynamic ordering of driven vortex matter has been investigated in the peak effect regime of both amorphous MoGe films and 2H-NbSe2 crystals by mode locking (ML) and dc transport measurements. ML features allow us to trace how the shear rigidity of driven vortices evolves with the average velocity. Determining the onset of ML resonance in different magnetic fields and/or temperatures, we find that the dynamic ordering frequency (velocity) exhibits a striking divergence in the higher part of the peak effect regime. Interestingly, this phenomenon is accompanied by a pronounced peak of dynamic critical current. Mapping out field-temperature phase diagrams, we find that divergent points follow well the thermodynamic melting curve of the ideal vortex lattice over wide field and/or temperature ranges. These findings provide a link between the dynamic and static melting phenomena which can be distinguished from the disorder induced peak effect.Comment: 9 pages, 6 figure

    Formation of close-in super-Earths in evolving protoplanetary disks due to disk winds

    Full text link
    Planets with masses larger than about 0.1 Earth-masses undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically driven disk winds, which would alter the disk profile and the type I migration in the close-in region. We investigate orbital evolution of planetary embryos in disks that viscously evolve under the effects of disk winds. The aim is to discuss effects of altered disk profiles on type I migration. In addition, we aim to examine whether observed distributions of close-in super-Earths can be reproduced by simulations that include effects of disk winds. We perform N-body simulations of super-Earth formation from planetary embryos, in which a recent model for disk evolution is used. We explore a wide range of parameters and draw general trends. We also carry out N-body simulations of close-in super-Earth formation from embryos in such disks under various conditions. We find that the type I migration is significantly suppressed in many cases. Even in cases in which inward migration occurs, the migration timescale is lengthened to 1 Myr, which mitigates the type I migration problem. This is because the gas surface density is decreased and has a flatter profile in the close-in region due to disk winds. We find that when the type I migration is significantly suppressed, planets undergo late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced. In addition, we show that in some results of simulations, systems with a chain of resonant planets, like the TRAPPIST-1 system, form.Comment: 18 pages, 19 figures, accepted for publication in A&

    Colloidal Composite of Hydroxylated Fullerenes and Gold Nanoparticles

    Get PDF
    Since bare gold nanoparticles are unstable, they have to be stabilized by protecting with ligands, stabilizing with polymers or immobilizing on solids. Properties of gold nanoparticles depend on the design of their protecting ligands

    Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer

    Get PDF
    Covalent coupling of sulfonic group (–SO3H) was attempted on different polymers to evaluate efficacy of this functional group in inducing nucleation of apatite in body environment, and thereupon to design a simple biomimetic process for preparing bonelike apatite-polymer composites. Substrates of polyethylene terephthalate (PET), polycaprolactam (Nylon 6), high molecular weight polyethylene (HMWPE) and ethylene-vinyl alcohol copolymer (EVOH) were subjected to sulfonation by being soaked in sulfuric acid (H2SO4) or chlorosulfonic acid (ClSO3H) with different concentrations. In order to incorporate calcium ions, the sulfonated substrates were soaked in saturated solution of calcium hydroxide (Ca(OH)2). The treated substrates were soaked in a simulated body fluid (SBF). Fourier transformed infrared spectroscopy, thin-film X-ray diffraction, and scanning electron microscopy showed that the sulfonation and subsequent Ca(OH)2 treatments allowed formation of –SO3H groups binding Ca2+ ions on the surface of HMWPE and EVOH, but not on PET and Nylon 6. The HMWPE and EVOH could thus form bonelike apatite layer on their surfaces in SBF within 7 d. These results indicate that the –SO3H groups are effective for inducing apatite nucleation, and thereby that surface sulfonation of polymers are effective pre-treatment method for preparing biomimetic apatite on their surfaces

    Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

    Get PDF
    The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules

    The Effect of an Early Planetesimal-Driven Migration of the Giant Planets on Terrestrial Planet Formation

    Full text link
    The migration of the giant planets due to the scattering of planetesimals causes powerful resonances to move through the asteroid belt and the terrestrial planet region. Exactly when and how the giant planets migrated is not well known. In this paper we present results of an investigation of the formation of the terrestrial planets during and after the migration of the giant planets. The latter is assumed to have occurred immediately after the dissipation of the nebular disk -- i.e. "early" with respect to the timing of the Late Heavy Bombardment (LHB). The presumed cause of our modeled early migration of the giant planets is angular mometum transfer between the planets and scattered planetesimals.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore