638 research outputs found

    From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.

    Get PDF
    Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry

    Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    Get PDF
    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability mu_a [H(omega) oriented within the hexagonal plane] below the Neel temperature T_N. This excitation softens from 41 to 32 cm-1 on heating and finally disappears above T_N. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity epsilon_c within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases on heating towards room temperature thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons; however, their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon- paramagnon differential absorption processes. The latter is enabled by a strong short-range in-plane spin correlations in the paramagnetic phase.Comment: subm. to PR

    Relationship of Hypochaeris salzmanniana (Asteraceae, Lactuceae), an endangered species of the Iberian Peninsula, to H. radicata and H. glabra and biogeographical implications

    Get PDF
    Hypochaeris salzmanniana DC. (Asteraceae, Lactuceae) is an endangered species on the Iberian Peninsula, known from only eight coastal populations. Most authors have treated it as a variety, subspecies or simply as a synonym of H. glabra L. On the basis of morphological and cytological characters, Talavera recently separated H. salzmanniana (2n = 8) from H. glabra (2n = 10). Material of H. salzmanniana, H. glabra and H. radicata was collected from Spain, Italy, Sicily and Tunisia in order to assess taxonomic status and population relationships. Amplified Fragment Length Polymorphism (AFLP) analysis revealed three well-differentiated species. A close relationship between H. salzmanniana and H. radicata is also confirmed by AFLP analysis and chromosome number (2n = 8), morphology, and rDNA localization (FISH, fluorescence in situ hybridization). Hypochaeris salzmanniana and H. radicata share three fixed diagnostic AFLP fragments out of 348 fragments scored. The population structure of H. salzmanniana reveals distinct groups in southern Spain that are separated geographically. High differentiation among a western (Conil to Zahara), an intermediate (Punta Paloma and Los Algarbes) and an eastern (Algeciras and La Línea) group may reflect ancient separation. Population sizes and genetic compatibility differ greatly among populations and can be used to explain levels of within-population genetic diversity, together with recent documented loss of habitats resulting from tourist developments. Population structures of H. radicata and H. glabra show a similar geographical patterning: strongly differentiated populations from the Betic Cordillera and from the Iberian Massif, which are separated at present by the Guadalquivir river. Geological events at the end of the Tertiary (Tortonian-Messinian Miocene) might help explain patterns of differentiation in these three species of sect. Hypochaeris.Austrian Science Foundation FWF P-15225Ministerio de Ciencia y Tecnología PB96-1352, REN2002-04634-C05-03, REN2002-04354-C02-0

    Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As

    Get PDF
    We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.Comment: 22 pages, 14 figure

    Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius.

    Get PDF
    OBJECTIVES: MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. METHODS: We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. RESULTS: Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. CONCLUSIONS: Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy

    Oxidation process of AlOx-based magnetic tunnel junctions studied by photoconductance

    Get PDF
    The oxidation process of Co/AlOx/Co magnetic tunnel junctions has been investigated by photoconductance, in addition to traditional transport measurements. The shape of the photoconductance curves is explained within the framework of a simple qualitative model, assuming an oxidation time dependent imbalance of the incident forward and reverse hot electron fluxes, as well as inelastic scattering processes in the oxide. Due to the large sensitivity of the technique, the presence of unoxidized Al beneath the barrier layer can be monitored very accurately. The disappearance of a negative contribution to the photocurrent indicates the complete oxidation of the barrier layer, which coincides with the maximum magnetoresistance. From a Fowler analysis, the barrier height is determined as a function of oxidation time. The observed disagreement of the effective barrier heights determined by this technique and those found by Simmons fits demonstrates the added value of photoconductance studies

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation

    Get PDF
    A laser induced fluorometry (LIF) system was developed to quantify mixing within spatially variable aquatic vegetation. A comparison is made between intrusive fluorometry techniques and the application of LIF, to quantify mixing in real vegetation in the laboratory setting. LIF provides greater spatial resolution when compared to point fluorometry. Furthermore, LIF is non-intrusive. A two-dimensional routing procedure is used to calculate the longitudinal and transverse velocities and mixing coefficients from a single pulse injection of tracer within a vegetation patch

    Magnetic record associated with tree ring density: Possible climate proxy

    Get PDF
    A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition
    corecore