109 research outputs found

    MHD Boundary Layer Flow of a Nanofluid Past a Wedge

    Get PDF
    AbstractThis paper analyzes the steady laminar magnetohydrodynamic (MHD) flow, heat and mass transfer characteristics in a nanofluid over a wedge in the presence of a variable magnetic field. The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations using similarity variables and then solved numerically by using spectral quasi linearization method (SQLM). The present numerical results are validated by favourable comparisons with previously published ones as the special cases of the present investigations. The effects of magnetic parameter, Falkner-Skan power-law parameter and the volume fraction parameter on the non-dimensional heat and mass transfer rates are presented graphically

    A pattern of serious adverse drug reactions reported in a tertiary care hospital, Rangaraya Medical College, Kakinada, Andhra Pradesh

    Get PDF
    Background: Serious adverse drug reactions (ADRs) constitute a major limitation in clinical development of a drug thus necessitating close monitoring. Studies regarding the pattern of serious ADRs are limited in southern India. The present study was conducted in tertiary care hospital in Andhra Pradesh with an objective to evaluate the pattern of severe cutaneous and non-cutaneous ADRs in our hospital and to assess the causality, severity, and preventability of these reactions.Methods: A retrospective observational study was conducted over two years, from January 2016 till January 2018 in our ADR monitoring center. The pattern of serious adverse drug reactions, the nature of ADR, suspected drug, the outcome and preventability were analyzed using Modified Hartwig and Siegel scale, and modified Schumock and Thorton scale.Results: Out of 734 ADRs reported, 42 were serious, while 692 were non-serious. Out of 42, 22 were dermatological in origin while the others were acute kidney injury, acute psychosis, febrile neutropenia, gynecomastia, and lipodystrophy. According to WHO causality assessment scale, 27 were probable while 15 were possible. The majority were reported in the age group of 16 to 65 years with female (34) preponderance. The most common drug category responsible was antimicrobials, followed by antiretrovirals, anti-epileptics, and analgesics.Conclusions: Antimicrobial, anti-epileptics, and analgesics contributed to serious ADRs. Although non-cutaneous ADRs did not result in hospitalization, they caused social inhibition and mental stress in the patient

    Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices

    Get PDF
    Aflatoxin is considered a “hidden poison” due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer’s fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern “omics” approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe

    Two decades of association mapping: Insights on disease resistance in major crops

    Get PDF
    Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties

    The TPR Domain in the Host Cyp40-like Cyclophilin Binds to the Viral Replication Protein and Inhibits the Assembly of the Tombusviral Replicase

    Get PDF
    Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication

    GABA Maintains the Proliferation of Progenitors in the Developing Chick Ciliary Marginal Zone and Non-Pigmented Ciliary Epithelium

    Get PDF
    GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABAA receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE) cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABAA receptor system. To quantify the effects on proliferation by GABAA receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABAA receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABAA receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl–transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABAA receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABAA receptors. This supported the depolarising role for the GABAA receptors. Inhibition of L-type voltage-gated Ca2+ channels (VGCCs) reduced the proliferation in the same way as inhibition of the GABAA receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27KIP1, along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27KIP1 after inhibition of either the GABAA receptors or the L-type VGCCs suggests a link between the GABAA receptors, membrane potential, and intracellular Ca2+ in regulating the cell cycle

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction

    Valorisation of agricultural biomass‑ash with CO2

    Get PDF
    This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (co2). the perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed‑loop process for the valorisation of wood in earlier works. the present work newly focusses on combining agricultural biomass with mineralised co2. Here, the reactivity of selected agricultural biomass ashes with co2 and their ability to be bound by mineralised carbonate in a hardened product is examined. three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. the calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate‑cementing phase was distinct and related to the particular biomass feedstock. this work shows that in common with woody biomass residues, carbonated agricultural biomass ash‑based monoliths have potential as novel low‑carbon construction products

    Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease

    Get PDF
    BACKGROUND Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin-12 and inter-leukin-23, was evaluated as an intravenous induction therapy in two populations with moderately to severely active Crohn’s disease. Ustekinumab was also evaluated as subcutaneous maintenance therapy. METHODS We randomly assigned patients to receive a single intravenous dose of ustekinumab (either 130 mg or approximately 6 mg per kilogram of body weight) or placebo in two induction trials. The UNITI-1 trial included 741 patients who met the criteria for primary or secondary nonresponse to tumor necrosis factor (TNF) antagonists or had unacceptable side effects. The UNITI-2 trial included 628 patients in whom conventional therapy failed or unacceptable side effects occurred. Patients who completed these induction trials then participated in IM-UNITI, in which the 397 patients who had a response to ustekinumab were randomly assigned to receive subcutaneous maintenance injections of 90 mg of ustekinumab (either every 8 weeks or every 12 weeks) or placebo. The primary end point for the induction trials was a clinical response at week 6 (defined as a decrease from baseline in the Crohn’s Disease Activity Index [CDAI] score of ≥100 points or a CDAI score <150). The primary end point for the maintenance trial was remission at week 44 (CDAI score <150). RESULTS The rates of response at week 6 among patients receiving intravenous ustekinumab at a dose of either 130 mg or approximately 6 mg per kilogram were significantly higher than the rates among patients receiving placebo (in UNITI-1, 34.3%, 33.7%, and 21.5%, respectively, with P≤0.003 for both comparisons with placebo; in UNITI-2, 51.7%, 55.5%, and 28.7%, respectively, with P<0.001 for both doses). In the groups receiving maintenance doses of ustekinumab every 8 weeks or every 12 weeks, 53.1% and 48.8%, respectively, were in remission at week 44, as compared with 35.9% of those receiving placebo (P = 0.005 and P = 0.04, respectively). Within each trial, adverse-event rates were similar among treatment groups. CONCLUSIONS Among patients with moderately to severely active Crohn’s disease, those receiving intravenous ustekinumab had a significantly higher rate of response than did those receiving placebo. Subcutaneous ustekinumab maintained remission in patients who had a clinical response to induction therapy. (Funded by Janssen Research and Development; ClinicalTrials.gov numbers, NCT01369329, NCT01369342, and NCT01369355.
    • …
    corecore