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Abstract

This paper analyzes the steady laminar magnetohydrodynamic (MHD) flow, heat and mass transfer characteristics in a nanofluid

over a wedge in the presence of a variable magnetic field. The governing nonlinear partial differential equations are transformed

into a system of ordinary differential equations using similarity variables and then solved numerically by using spectral quasi

linearization method (SQLM). The present numerical results are validated by favourable comparisons with previously published

ones as the special cases of the present investigations. The effects of magnetic parameter, Falkner-Skan power-law parameter and

the volume fraction parameter on the non-dimensional heat and mass transfer rates are presented graphically.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

The term ”nanofluid”, which is first pioneered by Chio et al. [1], to indicate engineered colloids, composed of

nanoparticles dispersed in a base fluid for the enhancement of heat transfer rate. Chio noticed that the addition

of one percent of nanoparticles by volume to the usual fluids increases the thermal conductivity of the fluid up to

approximately twice. The state of art review of nanofluids is presented in the book by Das [2]. The flow, heat and

mass transfer characteristics in nanofluids received the attraction of many researchers duo to its importance in industry

and technology. Magnetic nanofluid is a magnetic colloidal suspension of carrier liquid and magnetic nanoparticles.

The advantage of the magnetic nanofluid is that fluid flow and heat transfer can be controlled by an external source,

which makes it applicable to various fields such as electronic packing, thermal engineering, and aerospace. On the

other hand, the study of magneto-hydrodynamic flow for an electrically conducting fluid past a heated wedge has

important applications in many engineering problems such as plasma studies, petroleum industries, MHD power

generators, cooling of nuclear reactors, the boundary layer control in aerodynamics, and crystal growth. Further,

MHD is significant in the control of boundary layer flow and metallurgical processes. Several authors ([3–9]) studied

the effects of MHD on laminar boundary layer flow, heat and mass transfer over a wedge in different situations for
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Fig. 1. Physical model and coordinate system.

different types of fluids. Makanda [10] studied that the natural convection of viscoelastic fluid from a cone embedded

in a porous medium with viscous dissipation.

Papailiou and Lykoudis [11], established experimentally the existence of the similarity solutions for the case of

variable magnetic field. They found that similarity solutions exist when the intensity of the magnetic field changes

with, where is the coordinate measured in the direction of the flow. The objective of this paper is to consider the

effect of variable magnetic field on the fluid flow and heat transfer characteristics for a fixed wedge with variable wall

temperature and concentration.

2. Mathematical Formulation

Consider a steady laminar boundary layer flow past a wedge embedded in a free stream of electrically conducting

nanofluid with velocity U(x). Choose the co-ordinate system such that x-axis is along the surface of the wedge

andy-axis normal to the surface of the wedge, as shown in the Fig. 1. The surface of the wedge is maintained with

variable temperature Tw(x) and variable concentrationCw(x). T and C are ambient temperature and concentration at

any arbitrary reference point in the medium, respectively. A variable magnetic field B(x) is applied normal to the

walls of the wedge. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be

neglected in comparison with the applied magnetic field. With the above assumptions, using Boussinesq and boundary

layer approximations, the governing equations for the nanofluid flow are given by

∂u
∂x
+
∂u
∂y
= 0 (1)

u
∂u
∂x
+ v
∂u
∂y
= U(x)

dU(x)

dx
+
μn f

ρn f

∂2u
∂y2
+
σB(x)2

ρn f
(U(x) − u), (2)

u
∂T
∂x
+ v
∂T
∂y
= αn f

∂2T
∂y2
, (3)

u
∂C
∂x
+ v
∂C
∂y
= D1

∂2C
∂y2
. (4)

where u and v are the components of velocity along x and y directions respectively, T is the dimensional temperature

of the fluid near the plate, C is the dimensional concentration, D1 is the molecular diffusivity of nanofluid.

The effective dynamic viscosity(μn f ), the effective density(ρn f ), the thermal diffusivity (αn f ) and heat capacitance

((ρCp)n f ) of the nanofluid are given by

μn f =
μ f

(1 − φ)2.5
, ρn f = (1 − φ)ρ f + φρs, αn f =

kn f

(ρCp)n f
, (ρCp)n f = (1 − φ)(ρCp) f + φ(ρCp)s. (5)
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where φ is the solid volume fraction of nanoparticles. The thermal conductivity of nanofluids restricted to spherical

nanoparticles is approximated by the Maxwell-Garnetss (MG) model (see [12] and [13]),

kn f = k f
ks + 2k f − 2φ(ks + k f )

ks + 2k f + φ(ks + k f )
(6)

Here, the subscript n f , f and s represent the thermophysical properties of the nanofluid, base fluid and nano solid

particles, respectively.

The boundary conditions are:

u = 0, v = 0, T = Tw(x), C = Cw(x) at y = 0,
u→ U(x) = u0 xm, T → T∞, C → C∞ as y→ ∞, (7)

The aim of this study is to estimate the skin friction coefficient C f , local heat transfer coefficient, Nusselt number

Nux and local mass transfer coefficient, Sherwood numberS hx. These are defined as

C f =
μn f

ρ(U(x))2

(
∂u
∂y

)
y=0

, Nux =

(
k x

k f (Tw(x) − T∞)

) (
∂T
∂y

)
y=0

, S hx =
x

(Cw(x) −C∞)

(
∂C
∂y

)
y=0

(8)

Hence, the non dimensional skin friction coefficient, local heat-transfer coefficient and mass transfer coefficient are

given by

(1 − φ)2.5
√

RexC f = 2 F′′(0),
Nux√

Rex

k f

kn f
= −θ′(0),

S hx√
Rex
= −φ′(0) (9)

where the local Reynolds number Rex =
x U(x)

ν f
.

3. Method of solution

In order to obtain similarity solutions of the problem, we assume that the variable magnetic field B(x) is of the form

B(x) = B0x(m−1)/2, where B0 is the uniform magnetic field (see [14],[15]). Further, we assume that the free stream

velocity U(x) is of the form U(x) = U0xm, where u0 is constant and m is the Falkner-Skan power-law parameter with

0 � m � 1. Here m = β/(2 − β) where β is the Hartree pressure gradient parameter that corresponds to β = Ω/Π
for the total wedge angle Ω. We note that β = 0 and β = 1 correspond to the horizontal and vertical wall cases,

respectively.

Introducing the stream function ψ(x, y) through u =
∂ψ

∂y
, v = −∂ψ

∂x
and the following similarity variables

ψ = (ν f u0 xm+1)1/2F(η), η =

(
u0 xm+1

ν f

)1/2 y
x
,

T − T∞
Tw(x) − T∞

= θ(η), Tw(x) − T∞ = xΔT

C −C∞
Cw(x) −C∞

= φ(η), Cw(x) −C∞ = xΔC

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (10)

in Eqs. (2), (3) and (4), we obtain

F′′′ − φ1

[
m F′2 −

(
m + 1

2

)
F F′′ − m

]
+ (1 − φ)2.5 M

(
1 − F′

)
= 0, (11)

θ′′ + Pr
k f

kn f
φ2

(
m + 1

2
F θ′ − F′ θ

)
= 0, (12)

ϕ′′ + S c
(

m + 1

2
F ϕ′ − F′ ϕ

)
= 0, (13)
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where a prime denotes differentiation with respect to η, Pr =
ν f (ρCp) f

k f
is the Prandtl number, S c =

ν f

D
is the Schmidt

number and M =
σ B0

2

ρn f u0

is the magnetic parameter, φ1 = (1 − φ)2.5

[
1 − φ + φ ρs

ρ f

]
, φ2 =

[
1 − φ + φ (ρCp)s

(ρCp) f

]
.

The boundary conditions (7) in terms of F, θ and ϕ becomes

η = 0 : F(0) = 0, F′(0) = 0, θ(0) = 1, ϕ(0) = 1,
as η→ ∞ : F′ → 1, θ → 0, ϕ→ 0,

}
. (14)

4. The Spectral QLM Solution of the Problem

The non-linear nonhomogeneous differential equations (11) - (13) are solved subject to the boundary conditions

(14) numerically using the spectral quasi- linearization method [16]. Applying the Quasi Linearization Method (QLM)

on Eqs. (11) - (13) gives the following iterative sequence of linear differential equations,

F′′′r+1 + a1,r F′′r+1 + a2,r F′r+1 + a3,r Fr+1 = a4,r, (15)

b1,r F′r+1 + b2,r Fr+1 + θ
′′
r+1 + b3,r θ

′
r+1 + b4,r θr+1 = b5,r, (16)

c1,r F′r+1 + c2,r Fr+1 + ϕ
′′
r+1 + c3,r ϕ

′
r+1 + c4,r ϕr+1 = c5,r, (17)

where the coefficients ais,r, (s = 1, 2, 3, 4), bi,r and ci,r, (i = 1, 2, 3, 4, 5) are known functions (from previous calcula-

tions) and are defined as

a1,r = φ1

m + 1

2
Fr, a2,r = −2 m φ1 F′r, a3,r = φ1

m + 1

2
F′′r ,

a4,r = −φ1 m − M
φ3

(1 − φ)2.5 − φ1 m( f ′r )2 − φ1

m + 1

2
Fr F′′r , b1,r = −Pr φ2

k f

kn f
θr, b2,r = Pr φ2

k f

kn f

m + 1

2
θ′r,

b3,r = Pr φ2

k f

kn f

m + 1

2
Fr, b4,r = −Pr φ2

k f

kn f
F′r, b5,r = −Pr φ2

k f

kn f
(θr F′r −

m + 1

2
Fr θ

′
r),

c1,r = −S cϕr, c2,r = S c
m + 1

2
ϕ′r, c3,r = S c

m + 1

2
Fr, c4,r = −S c F′r, c5,r = −S c (ϕr F′r −

m + 1

2
Fr ϕ

′
r).

The above QLM sceme (15) to (17) is a coupled linear system of differential equations with variable coefficients,

and is ready to solve iteretively using any numerical method such as finite differences, finite elements, Runge-Kutta

based shooting methods or collocation methods for r = 1, 2, 3.... In this work, as will be discussed below, the

Chebyshev spectral collocation method was used to solve the QLM scheme (15) to (17). This method is based

on approximating the unknown functions by the Chebyshev interpolating polynomials in such a way that they are

collocated at the Gauss-Lobatto points defined as

η j = cos(
j π
N

), j = 0, 1, 2...,N, (18)

where N is the number of collocation points used. The derivative of Fr+1 at the collocation points are represented as

dsFr+1

dηs =

N∑
k=0

Ds
k jFr+1(ηk) = Ds F j = 0, 1, 2, ...,N, (19)

where Ds = ((2/L)D)s and D is the Chebyshev spectral differentiation matrix (see, e.g., [20, 21]), and F is the vector

function is given by F = [F(η0), F(η1), ..., F(ηN)]T . Similarly the derivatives of θ and ϕ are given by θ(s) = Ds Θ and

ϕ(s) = DsΦ, where s is the order of derivative, and D is the matrix of order (N + 1) × (N + 1). Substituting (18) and

(19) in SQLM scheme (15) - (17) results in the following matrix equation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fr+1

Θr+1

Φr+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1

K2

K3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)
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where

A11 = D3 + a1,rD2 + a2,rD + a3,rI, A12 = O, A13 = O,

A21 = b1,rD + b2,rI, A22 = D2 + b3,rD + b4,rI, A23 = O,

A31 = c1,rD + c2,rI, A23 = O, A33 = D2 + c3,rD + c4,rI,

K1 = a4,r, K2 = b5,r, K3 = c5,r.

(21)

In the above definitions, as,r(s = 1, 2, 3), bi,r and ci,r, (i = 1, 2, 3, 4, 5) are diagonal matrices of size (N + 1)× (N + 1), I
is a (N + 1)× (N + 1) identity matric and O is a matrix of zeroes of order (N + 1)× (N + 1). The approximate solutions

for F,Θ and Φ are obtained by solving the matrix system (20).

5. Results and Discussion

The nonlinear differential equations (11) - (13) with boundary conditions (14) do not have a closed form solu-

tion. These equations were solved numerically using the SQLM. To check the accuracy of the solutions, the non-

dimensional skin friction for pure water (nanoparticle volume fraction ) is compared with results reported by Ariel

(1994) for the case of vertical plate , and it was found that they are in good agreement.

Table 1. Comparison of skin friction F′′(0) values calculated by the present method and that of [17], for pure water φ = 0, m = 1, with Pr = 1 and

S c = 0.24.

M [17] Present

0 1.232588 1.2325965196

1 1.585331 1.5852800424

4 2.346663 2.3468696599

25 5.147965 5.1479646032

100 10.074741 10.0747411168

In the present work, MHD mixed convection heat and mass transfer past a wedge immersed in water based

nanofluid with variable wall temperature and concentration is conducted. In this study, two different nanoparticles,

namely, silver (Ag) and gold (Au), with water as the base fluid considered. The Prandtl number of the base fluid was

kept at constant as Pr = 6.7850. The thermophysical properties of the nanofluid are given in table 2 (see Oztop and

Abu-Nada [18]).

Table 2. Thermo-physical properties of water and nanoparticles.

Properties ρ(kg/m3) Cp(J/kg K) k(W/mK)

Pure water 997.1 4179 0.613

Ag 10500 235 429

Au 19282 129 310

Volume fraction of nanoparticles is a key parameter for studying the effect of nanoparticles on flow fields, tem-

perature and concentration distributions of nanofluids, the resulting influence of φ on the non-dimensional profiles is

presented in the Figs. 2, for both Ag−water and Au−water nanofluids. In the limiting case φ→ 0 corresponds to the

base fluid (water). In Fig. 2 the velocity across the boundary layer is shown for different values of the nanoparticle

volume fraction. From Fig. 2(a) velocity of both types of nanofluids increase for the increasing values of φ. As the

nanoparticle volume fraction φ increases, in the dynamic boundary layer the width of the velocity profiles decreases,

because of the gradient of the velocity from wall to free stream is more rapid when φ increases. The same trend is

observed in the case of a Au − water nanofluid. Figs. 2(b) and 2(c) illustrate the effect of the nanoparticle volume

fraction on the temperature and concentration profiles, respectively, in the case of a Ag − water nanofluid. It is clear
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Fig. 2. (a) Velocity ; (b) Temperature and (c) Concentration profiles for different values of φ

Fig. 3. Effect of M on (a) Heat transfer rate; (b) Mass transfer rate

that as the nanoparticle volume fraction increases the nanofluid temperature and the concentration increase. This can

be explained as the thermal conductivity of the nanofluid increases as the solid nano particles increase which are hav-

ing the high thermal conductivity than the base fluid. Hence, the heat transfer from base fluid to solid nano particles

is more and increases the temperature of the nanofluid. Since the thermal conductivity of Ag is more than that of

Au, hence, for the increasing solid nano particles of Ag and Au in the base fluid, we observe that the temperature

distribution of Ag − water nanofluid is correspondingly higher than that of a Au − water nanofluid. As a result, the

temperature of the nanofluid increases in mixed convection, with increasing nanoparticle volume fraction. Same trend

can be seen in the case of Au − water nanofluid. The concentration boundary layer thickness increases for both types

of nanofluids. And further we can conclude that the velocity, temperature and concentration profiles of nanofluids are

higher than that of the water (φ = 0 corresponds to the base fluid (water)).

Figure (3) depict the variation of heat transfer rate (local Nusselt number (Nux)), mass transfer rate (local Sherwood

number (S hx)) with volume fraction of nanoparticles (φ) for different values of magnetic parameter (M) of both water

based nanofluids. It is seen that both the local Nusselt number and local Sherwood number increase as the magnetic

parameter increases. This is due to the motive force created by traverse magnetic field which tends to accelerate the

flow. As explained above, the nanofluid velocity increases as the magnetic parameter (M) increases in the mixed

convection, as a result of the hot nanofluid replaced by the cooled nanofluid chunks, hence the higher heat transfer

rates can be seen. A similar analogy con be seen in mass transfer rate.
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Fig. 4. Effect of m on (a) Heat transfer rate; (b) Mass transfer rate

Figs. 4 (a) and (b) show the heat transfer and mass transfer coefficients as a function of nanoparticle volume fraction

φ for m = 0 (horizontal plate), m = 0.5 (wedge surface) and m = 1 (stagnation point flow). As the wedge angle

parameter is increased, the local Nusselt number and the local Sherwood number increase for forced convection. This

may be explained by the fact that as the wedge angle increases, the wedge becomes flatter and less of an obstruction.

It is worth noting that the present study reduces to that of a regular viscous fluid when φ = 0.

The variation of the wall heat and mass transfer rates are shown for different values of nanoparticle volume fraction

and for different configurations of the wedge surface in Figs. 3 - 4. The heat and mass transfer rates more for the

increasing values of φ. The heat and mass transfer rates increase from pure base fluid (φ → 0) to that of nanofluid.

Same trends can be seen in both the water based nanofluids.
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