966 research outputs found
Conceptual design study of advanced acoustic-composite nacelles
Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits
Atmospheric water vapor absorption at 12 CO2 laser frequencies
Measurements of the absorption of CO2 laser radiation in the 9.4 micron band by pressure broadened water vapor samples are summarized. The water vapor temperatures used were 25, 30, and 35 C
Dynamical Masses for Pre-Main Sequence Stars: A Preliminary Physical Orbit for V773 Tau A
We report on interferometric and radial-velocity observations of the
double-lined 51-d period binary (A) component of the quadruple pre-main
sequence (PMS) system V773 Tau. With these observations we have estimated
preliminary visual and physical orbits of the V773 Tau A subsystem. Among other
parameters, our orbit model includes an inclination of 66.0 2.4 deg, and
allows us to infer the component dynamical masses and system distance. In
particular we find component masses of 1.54 0.14 and 1.332 0.097
M_{\sun} for the Aa (primary) and Ab (secondary) components respectively.
Our modeling of the subsystem component spectral energy distributions finds
temperatures and luminosities consistent with previous studies, and coupled
with the component mass estimates allows for comparison with PMS stellar models
in the intermediate-mass range. We compare V773 Tau A component properties with
several popular solar-composition models for intermediate-mass PMS stars. All
models predict masses consistent to within 2-sigma of the dynamically
determined values, though some models predict values that are more consistent
than others.Comment: ApJ in press; 25 pages, 6 figures; data tables available in journal
versio
Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.
The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun.Comment: Yet another tagger included
Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length
The (D+1)-dimensional -two-parameter Lorentz-covariant
deformed algebra introduced by Quesne and Tkachuk [C. Quesne and V. M. Tkachuk,
J. Phys. A: Math. Gen. \textbf {39}, 10909 (2006).], leads to a nonzero minimal
uncertainty in position (minimal length). The Klein-Gordon equation in a
(3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant
deformed algebra is studied in the case where up to first order
over deformation parameter . It is shown that the modified Klein-Gordon
equation which contains fourth-order derivative of the wave function describes
two massive particles with different masses. We have shown that physically
acceptable mass states can only exist for which
leads to an isotropic minimal length in the interval . Finally, we have shown that the above estimation of
minimal length is in good agreement with the results obtained in previous
investigations.Comment: 10 pages, no figur
Evolution of the Velocity Ellipsoids in the Thin Disk of the Galaxy and the Radial Migration of Stars
Data from the revised Geneva--Copenhagen catalog are used to study the
influence of radial migration of stars on the age dependences of parameters of
the velocity ellipsoids for nearby stars in the thin disk of the Galaxy,
assuming that the mean radii of the stellar orbits remain constant. It is
demonstrated that precisely the radial migration of stars, together with the
negative metallicity gradient in the thin disk,are responsible for the observed
negative correlation between the metallicities and angular momenta of nearby
stars, while the angular momenta of stars that were born at the same
Galactocentric distances do not depend on either age or metallicity. (abridged)Comment: Astronomy Reports, Vol. 86 No. 9, P.1117-1126 (2009
Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models
Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary
with the interesting property that both stars are very similar in abundance but
one is sharp-lined and the other is broad-lined. We present combined
interferometric and spectroscopic studies of LamVir. The small scale of the
LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array
(IOTA), allowing us to determine its elements as well as the physical
properties of the components to high accuracy. The masses of the two stars are
determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors
respectively, and the two stars are found to have the same temperature of 8280
+/- 200 K. The accurately determined properties of LamVir allow comparisons
between observations and current stellar evolution models, and reasonable
matches are found. The best-fit stellar model gives LamVir a subsolar
metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical
parameters of LamVir also allow us to study its tidal evolution time scales and
status. Although currently atomic diffusion is considered to be the most
plausible cause of the Am phenomenon, the issue is still being actively debated
in the literature. With the present study of the properties and evolutionary
status of LamVir, this system is an ideal candidate for further detailed
abundance analyses that might shed more light on the source of the chemical
anomalies in these A stars.Comment: 43 Pages, 13 figures. Accepted for publication in Ap
Enabling nursing students to focus on the Ottawa Charter and the nurses role in tackling inequalities in health through international exchange
Student nurses in a transatlantic exchange program explored the role of registered nurses in five countries’ public health systems. The Ottawa Charter provided a framework for students to examine the nurse’s responsibilities in public health. Students took practice placements in geographically rural areas on another continent and explored inequalities in health care. If nurses are to understand their role in the health care system then they must be taught the scope of their practice including their role in health promotion, public health practice and community development. For this project nursing instructors developed an assignment relevant to the aims and suitable for students in all five nursing programs. Only three of 48 students offered an assignment which focused on building healthy public policy. Nurse educators need to explore this further to ensure nurses of the future are aware of their role and responsibilities in this area and have skills to work effectively to influence and build healthy policy. The international student exchange supported the students’ developing understanding of the breadth of initiatives around the globe where nurses are actively engaged in addressing inequalities of health. Findings from an analysis of their assignments are presented in this evaluative report
- …