1,189 research outputs found

    Spontaneous Emission in Chaotic Cavities

    Get PDF
    The spontaneous emission rate \Gamma of a two-level atom inside a chaotic cavity fluctuates strongly from one point to another because of fluctuations in the local density of modes. For a cavity with perfectly conducting walls and an opening containing N wavechannels, the distribution of \Gamma is given by P(\Gamma) \propto \Gamma^{N/2-1}(\Gamma+\Gamma_0)^{-N-1}, where \Gamma_0 is the free-space rate. For small N the most probable value of \Gamma is much smaller than the mean value \Gamma_0.Comment: 4 pages, RevTeX, 1 figur

    Phase III randomised controlled trial on PSMA PET/CT guided hypofractionated salvage prostate bed radiotherapy of biochemical failure after radical prostatectomy for prostate cancer (PERYTON-trial):study protocol

    Get PDF
    BACKGROUND: Salvage external beam radiotherapy (sEBRT) for patients with a biochemical recurrence (BCR) after radical prostatectomy provides a 5-year biochemical progression-free survival up to 60%. Multiple studies have shown that dose escalation to the primary prostate tumour improves treatment outcome. However, data is lacking on the role of dose escalation in the recurrent salvage setting. The main objective of the PERYTON-trial is to investigate whether treatment outcome of sEBRT for patients with a BCR after prostatectomy can be improved by increasing the biological effective radiation dose using hypofractionation. Moreover, patients will be staged using the PSMA PET/CT scan, which is superior to conventional imaging modalities in detecting oligometastases. METHODS: The PERYTON-study is a prospective multicentre open phase III randomised controlled trial. We aim to include 538 participants (269 participants per treatment arm) with a BCR after prostatectomy, a PSA-value of < 1.0 ng/mL and a recent negative PSMA PET/CT scan. Participants will be randomised in a 1:1 ratio between the conventional fractionated treatment arm (35 × 2 Gy) and the experimental hypofractionated treatment arm (20 × 3 Gy). The primary endpoint is the 5-year progression-free survival after treatment. The secondary endpoints include toxicity, quality of life and disease specific survival. DISCUSSION: Firstly, the high rate of BCR after sEBRT may be due to the presence of oligometastases, for which local sEBRT is inappropriate. With the use of the PSMA PET/CT before sEBRT, patients with oligometastases will be excluded from intensive local treatment to avoid unnecessary toxicity. Secondly, the currently applied radiation dose for sEBRT may be too low to achieve adequate local control, which may offer opportunity to enhance treatment outcome of sEBRT by increasing the biologically effective radiotherapy dose to the prostate bed. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (Identifier: NCT04642027). Registered on 24 November 2020 – Retrospectively registered. The study protocol was approved by the accredited Medical Ethical Committee (METc) of all participating hospitals (date METc review: 23-06-2020, METc registration number: 202000239). Written informed consent will be obtained from all participants

    The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3

    Get PDF
    We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions (PDFs) of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centers when compared to blue galaxy ones. In addition, distinct group center definitions are used to show that our results are insensitive to center definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.Comment: 14 pages, Accepted to MNRA

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    The random magnetic flux problem in a quantum wire

    Full text link
    The random magnetic flux problem on a lattice and in a quasi one-dimensional (wire) geometry is studied both analytically and numerically. The first two moments of the conductance are obtained analytically. Numerical simulations for the average and variance of the conductance agree with the theory. We find that the center of the band ϵ=0\epsilon=0 plays a special role. Away from ϵ=0\epsilon=0, transport properties are those of a disordered quantum wire in the standard unitary symmetry class. At the band center ϵ=0\epsilon=0, the dependence on the wire length of the conductance departs from the standard unitary symmetry class and is governed by a new universality class, the chiral unitary symmetry class. The most remarkable property of this new universality class is the existence of an even-odd effect in the localized regime: Exponential decay of the average conductance for an even number of channels is replaced by algebraic decay for an odd number of channels.Comment: 16 pages, RevTeX; 9 figures included; to appear in Physical Review

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change

    Mesoscopic Tunneling Magnetoresistance

    Full text link
    We study spin-dependent transport through ferromagnet/normal-metal/ferromagnet double tunnel junctions in the mesoscopic Coulomb blockade regime. A general transport equation allows us to calculate the conductance in the absence or presence of spin-orbit interaction and for arbitrary orientation of the lead magnetizations. The tunneling magnetoresistance (TMR), defined at the Coulomb blockade conductance peaks, is calculated and its probability distribution presented. We show that mesoscopic fluctuations can lead to the optimal value of the TMR.Comment: 5 pages, 3 eps figures included using epsf.sty. Revised text and improved notation, fig. 2 removed, explicit equations for the GSE case adde

    Non-perturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide

    Get PDF
    A non-perturbative random-matrix theory is applied to the transmission of a monochromatic scalar wave through a disordered waveguide. The probability distributions of the transmittances T_{mn} and T_n=\sum_m T_{mn} of an incident mode n are calculated in the thick-waveguide limit, for broken time-reversal symmetry. A crossover occurs from Rayleigh or Gaussian statistics in the diffusive regime to lognormal statistics in the localized regime. A qualitatively different crossover occurs if the disordered region is replaced by a chaotic cavity. ***Submitted to Physical Review E.***Comment: 7 pages, REVTeX-3.0, 5 postscript figures appended as self-extracting archive. A complete postscript file with figures and text (4 pages) is available from http://rulgm4.LeidenUniv.nl/preprints.htm

    Spectral Statistics in Chiral-Orthogonal Disordered Systems

    Full text link
    We describe the singularities in the averaged density of states and the corresponding statistics of the energy levels in two- (2D) and three-dimensional (3D) chiral symmetric and time-reversal invariant disordered systems, realized in bipartite lattices with real off-diagonal disorder. For off-diagonal disorder of zero mean we obtain a singular density of states in 2D which becomes much less pronounced in 3D, while the level-statistics can be described by semi-Poisson distribution with mostly critical fractal states in 2D and Wigner surmise with mostly delocalized states in 3D. For logarithmic off-diagonal disorder of large strength we find indistinguishable behavior from ordinary disorder with strong localization in any dimension but in addition one-dimensional 1/E1/|E| Dyson-like asymptotic spectral singularities. The off-diagonal disorder is also shown to enhance the propagation of two interacting particles similarly to systems with diagonal disorder. Although disordered models with chiral symmetry differ from non-chiral ones due to the presence of spectral singularities, both share the same qualitative localization properties except at the chiral symmetry point E=0 which is critical.Comment: 13 pages, Revtex file, 8 postscript files. It will appear in the special edition of J. Phys. A for Random Matrix Theor

    Random bond XXZ chains with modulated couplings

    Get PDF
    The magnetization behavior of q-periodic antiferromagnetic spin 1/2 Heisenberg chains under uniform magnetic fields is investigated in a background of disorder exchange distributions. By means of both real space decimation procedures and numerical diagonalizations in XX chains, it is found that for binary disorder the magnetization exhibits wide plateaux at values of 1+2(p-1)/q, where p is the disorder strength. In contrast, no spin gaps are observed in the presence of continuous exchange distributions. We also study the magnetic susceptibility at low magnetic fields. For odd q-modulations the susceptibility exhibits a universal singularity, whereas for q even it displays a non-universal power law behavior depending on the parameters of the distribution.Comment: 4 pages, 3 figures. Final version to appear in PR
    corecore