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The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by
means of numerical simulations based on the invariant embedding equations. In particular, we analyze the
influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection
and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects
stemming from the combination of mode dispersion and rough-surface scattering: For a given waveguide
length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects
manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering en-
hancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in
the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface
scattering in quasi-one-dimensional structufesveguidey gives rise to the coexistence of the ballistic,
diffusive, and localized regimes within the same samf#©163-182¢29)09103-]

[. INTRODUCTION In this paper we address the problem of a ballistic system
that is disordered in the sense that there are no bulk scatter-
The statistical properties of disordered systems is a riclers, and the only place where scattering occurs is at a rough
and long-standing problem that attracts many efforts bot#oundary. We choose to explore not the statistics of the ei-
theoretical and experimental. In quantum solid-state physicg§envalues of completely closed systeftike resonators or
much attention is paid to statistics of eigenfunctions and eiduantum dots but the statistical properties of scattering and
genvalues of closed disordered systems. Disorder in solid€flecting amplitudes in bounded, but open in one direction,
state problems is usually represented by impurities that areYStems(waveguiding structurgs The key entities for this

randomly distributed over the whole sample. For this sort in,\)/lroblem q][g t”he transm%smlg ané:i reflec'uo% a"?ﬂ'{ﬁdes-
mesoscopic samples with “bulk disorder” the number of ore specinically, we consideria-moge waveguide wi e

well-established statistical characteristics is enorm@es, coundary corrugated within a finite intervall), and study
the statistical properties of the transmission through, and re-
for example, Ref. 1, and references thereirhe success of

. b ibed to th it f th I.erction from, the disordered segment of the waveguide. This
mesosco(§>|c|:s m?y € ‘ngr' ? % IeheX|she_n_ce ofthe r|1(on IrE)'roblem arises naturally in the characterization of transport
earo model put forward by EfetovAlthough itis aremark-  oqherties related to, for instance, optical waveguides and

able tool for studying mesoscopic effects, enodel has, ~ figers, remote sensing, radio wave propagation, sonar, shal-
however, restricted validity. For example, the system sizqoy water waves, and geophysical probfigOn the other
must be much greater than the mean free path. Generalizfand, it describes as well the electronic transport in meso-
tion to chaotic ballistic system@.e., quantum billiardshas  scopic system&?® being especially relevant to conductance in
recently become a topic of great interest. Progress in thiganowires®-13

direction has become possible due to the recently proposed The analogous problem with bulk scatterers was ad-
field theory for quantum ballisticsBy exploiting the tool, dressed by many authotsee, for example, Refs. 6, 8, 14,
the authors of Refs. 4 and 5 managed to treat different corrand references therginFor a waveguide with bulk disorder
elators in a clean system within an extremely chaotic limit,all transmission coefficient§,,, (subindexesr andm stand
when the typical relaxation time is of the order of the flight for the number of the incident and transmitted mode, respec-
time (diffusive boundary scatteringThey found that naive tively) behave in a similar way. Due to the strong intermode
substitution of the mean free path for the system size intonixing all information about the dependence is washed out
correlators obtained for bulk disorder would give wrong re-after a few scattering events, which means thatLfaf the
sults for the ballistic case, and that, in fact, systems with bullorder of the scattering length(and largey all modes cross
and surface disorder are not equivalent. over from the ballistic regime to diffusion, and all channels
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become identical. As a result, there exists only one charagsurface with a random admittangg or to the Dirichlet

teristic length scale for all transmittances, the so-called loboundary condition on a slightly perturbed waveguide sur-

calization length, that is believed to be equalNb In the  face, £ denoting the random perturbation. In the latter case

case L<NI, each T, obeys Rayleigh statistics; as the the boundary conditiof) is an approximate one, containing

length L increases, all channelsnodes undergo the same the first two terms in the expansion of the exébtrichlet)

changes, and dt>NI the crossover to the log-normal dis- boundary condition about the unperturbed surface.

tribution (typical for the localized regimeakes placé> It Outside the region € x<L the solutions of the scattering

might seem that the only distinction of the problem with aproblem under consideration have the form

rough surface from that with bulk disorder is that the scat-

tering process takes place in a reduced effective volume, 1 _

which should lead just to a decrease of the mode mixing rate. Wo(x,1)= 2 —=xm(r)e "™ty x<0, (33

Naive considerations would suggest that if we introduced a m \/k_m

new localization length(which obviously must be much L L

longer than that for the bulk scatteringall results well _ Cikox ik x

known for the “bulk” problem should be valid for the “sur-  *n(X")= \/TXn(f)e " +§n: \/T)(m(f)e ™ mns

face” case after proper rescaling. However, the situation is " "

different and much more complicated. x>L. (3b)
The goal of the present paper is to study the statistic

properties of waves transmitted through and reflected from

waveguide with rough boundaries. The length dependenc

of the reflection and transmission amplitudes for each real

ization of the surface profile are numerically obtained by

solving a system of linear differential equations based on the

invariant embedding equatioAsThen we calculate the en-

semble average and fluctuations of the reflection and trans-

mission coefficients, reflectance, transmittance, and condudith k,= VK2 = K.

tance. It is shown in this paper that the interplay between By assuming thaf=¢n, the boundary conditiof2) can

mode dispersion and surface scattering gives rise to marfje also rewritten as

unusual (at least from the point of view of the intuition

gained from studies of the volume scattejiedfects; one of W(Ry+&(RYP(RY =0, ®)

such effects, the coexistence of different transport regimes gjhere the normal derivative

a certain length scale, has been previously repdrted.

ajlhe indexeam,n correspond to the outgoing and incoming
égodes, respectively, ang,(r) are the eigenfunctions of the
transverse wave equation

&2

2t xn(N=0, @

This paper is organized as follows. In Sec. Il the theoret- I¥(R) ov
ical formulation leading to the invariant embedding equa- P(Ry=n(Ry-|—n Ty (6)
tions for the matrices of the reflection and transmission am- R=Rg

plitudes is developed. The description of the numericaks introduced, withn(Ry) being the normal to the unper-

implementation of those equations for the particular Wavey bed surfacdk =R
s

guide geometry chosen here is detailed in Sec. Ill. The re- Let us employ Green’s theorem in the form
sults thus obtained for the average and fluctuations of the

reflection and transmission coefficients are presented and

discussed in Sec. IV, whereas those for the total reflection qf(R):J dBRfi. W(R’)w
and transmission, and conductance, appear in Sec. V. The IR’ JR’
relevant conclusions derived from this paper are summarized
in Sec. VI. J¥(R") )
- , GO(R 1R) ’ (7)
Il. THEORY : ) . .
where the integral is taken over any region containing the
We start from the wave equation point R and located inside the waveguide. The most conve-
nient integration region is the unperturbed waveguide surface
(A+k*)¥(R)=0, (1) cut by two planes normal to the axis of the waveguithey

are included tob The left (right) cross section must be

ith th .
with the boundary conditions placed to the leftright) of the pointR=(x,r). The integral

0 for x<0 and x>L (29  In Eq.(7) can then be expressed as the sum of the integrals
o W(R over the cross sections and the unperturbed waveguide sur-
V(R=Ry= —&R)- IV¥(R) for 0<x<L face with constraint &x’'<L:
R 1
2b .| 9Go(R",R)
@ \I’(R):J dS"‘I’(RS) - o, +1cross- )
JR RI_R/

given on the unperturbed waveguide surfé&te Rg, which
is translationally invariant along theaxis[R=(x,r)]. The  The integrall .;,ss Over the cross sections may be easily cal-
boundary condition(2) corresponds either to a waveguide culated from Eqgs(3) and the Green'’s function
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"o N r)Xm(r) Ik |XX‘
Go(R,R")= Z T 9

Then Eq.(8) takes the form

1 .
‘I’n(R)=\/TXn(r)e_'k“X+f ds’-¥,(Ry)

9Go(R’,R)
X e —

R’ (10

!
S

R’=R

The (oriented surface elementdS can be written as€dS
=ndS, dS=dxds The explicit form of the differentiatls
depends on the geometry under consideratibs=(r d ¢ for

circular cross sectionglydz for rectangular cross sections,

etc). Then we can rewrite Eq10) as

1 . L
v, (R)= \/T)(n(r)e"knx+ JO dx’ 3@ ds' ¥ (x',rl)
n

IGo(X",X;Tg,r)
X—

(13)
an’

Two conclusions can be derived from Ed.1). First, the

matrix of the reflection coefficients can be writtgfter sub-

stituting the explicit expression fdg, from Eq. (9)] in the

form

12

M mn= dx — pm(r)e kW (x,ry),

2i \/—

or [by the use of Eq(5)] as

1 (L
M on=— o7 dx % ds dm(X,S)E(X,S)Ph(X,8), (13
IJo

where

aXﬂ(r)} —ik.x
n(X,8)=—n(r e knX,
én(x,8)= \/— (ry)- [ §

S

The second result we derive from Ed.1) [by differentiat-

ing, settingR on the surface, and substituting the boundary

condition(5)] is a closed equation fab,(x,s):

<I>n(x,s)=¢n(x,s)—fOde’ éds’g(x’,s’)

X®,(x",8")Gh(X',x;8',S). (14

Here G{ is the mixed normal derivative
2
Gl(x' x;8',5)= J GO 1 1 9xn &X” giknlx=x'|
oSS Gnan Kn N on’

Differentiation of Eq.(14) yields
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D (X,S L
—Of =2, $m(X,)amn— fodx' ﬂgds'ax',s’)
(?(I)n(Xl,S/) Moyt el
XTGO(X ,X;s',s), (15
1
== 5 § 05 GHLIELSDLLS. (19

By comparing Eq(15) with Eq. (14) we obtain the relation
between the derivatived®,(x,s)/dL and the functions

{Pm(x,9)}:

dP(X,S)

aL (17)

:2 D n(X,S)amn.

With the aid of the latter equation, we now differentiate the
matrix of reflection coefficients Eq13):

drmn

B 1
Em__ 2 39 dS (L, 9)E(L,S)Dp(L.S)

— o "dx }g ds drm(X,9) E(X,5) X Pr(X,S)@mn-
IJo m

(18)

By substituting the explicit expressions fdr.,(x,s) from
Egs.(3b) and(6), and collecting all terms, we arrive at

dr

d|_ 2(6 ""—+re'k'-)v(e |kL+e|kL )

(199
Herek=diag(,) and
mn= %de)m(S)%(L,S)cﬁn(S),

1

iy

Analogous algebra leads to the equation for the matrix of
transmission coefficients:

dxn(r)
or

¢n(s) =

r=rg

dt — I |kL (e |kL+e|kL )

a- 2 (19b

From the reflection and transmission amplitudes, we de-
fine the reflection and transmission intensities, respectively,

Rmnzlrmn|21 (20

which vyield the intensity coupled into theth outgoing
channel in reflection and transmission, respectively, for a
given nth incoming channel. The reflectance and transmit-
tance for thenth incident mode are

anz Ram, Tn:E Toam-
m m

Finally, the total transmitted intensity in the case that all
incoming channels are incoherently populated, which is
equivalent to the dimensionless conductance for electrons, is

Tmn:|tmn|2-

(21)
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FIG. 1. lllustration of the waveguide geometry.
g= ; T,.

(22

[ll. NUMERICAL CALCULATIONS

For the numerical simulations we choose the simplest ge-

ometry(see Fig. 1 two parallel planeg=0 andz=d with
one-dimensional1D) deviationsé=¢(x) on one plane £
=0) only, where¢ is a 1D stochastic process. Thus, the
transverse eigenfunctions acquire the form

2 n o
Xn(2)= \[aSin(an), Kn=g k,= (E) — 2,
(23)
and the impurity matrix becomes
2 KnKm
Umn('-):amg(l-)- (24)

The 2NX 2N system of linear differential equatiori$9)

is solved numerically by means of the sixth-order Runge-

Kutta method. For each realizatigifx) (of lengthL,,,,) of
an ensemble of randomly rough surface profiles, the matric

of reflection and transmission amplitudes are calculated a

functions of the length.. These realizations obey Gaussian
statistics (with § the rms height with zero mean and a
Gaussian correlation function

W([x=x'[)=8"%(&(x)E(x"))=exd —a~?(x—x")?],
(25)
wherea is the transverse correlation length. The correspond
ing surface-power spectrum is thus given by

9(Q)=m"2aexd — (Qa)%/4]. (26)

The ensemble of surface realizations are numerically gene
ated as described in Ref. 24. By averaging oMgr such
realizations, the mean value§A) and fluctuations 5A

= ((A%)—(A)?)¥2 of the relevant physical quantities are ob-
tained. Hereafter we consider, unless otherwise stated,
waveguide of thicknesd=2.25\ supportingN=4 guided
modes.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS

In Fig. 2 the(T,,» are showr(in a semilogarithmic scale
for L<L,,=1500\. Averaging was carried out over the
results obtained foN ,= 4000 realizations of the surface pro-
file, whose roughness parameters aae-0.2A and &
=0.03\. The asymmetry in the behavior of the different
outgoing channels is evident from this plot. The intensity

J. A. SANCHEZ-GIL et al.
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L/A

FIG. 2. Mean-transmission intensiti€d ,,,) as functions of
length L in semilogarithmic scale for a waveguide of widthix
=2.25, supporting four modes, with disorder paramesgis=0.2
and §/A=0.03: (a) incident moden=1; (b) n=2; (c) n=3; (d)
n=4. Averaged oveN,=4000 realizations.

of the incoming mod€T,,,) decreases with length for ail

e@is decrease being steeper the larger the transverse momen-

m «,, hamely, the largen. The transmission into other
nondiagonal channelm#n also depends strongly on the
modem. In the beginning of the waveguide, this nondiagonal
transmission slightly increases from zero, being stronger into
higher modesm ((Ty+10)>(Tmn), With m+1m+#n). In

this situation onlysinglescattering is important, and we refer
to this regime as quasiballisti©B). In accordance with the
results of the perturbation theof?T) the intensity of mode

m is proportional to the cross section for roughness-induced
scattering from mode into modem, and to the length, as
follows:

r_
mn

nKm .
(T = W9(|kn—km|)L=
n™m

For the diagonal transmission, PT predicts

a
2820 Kok
(To) =1-L 20 o L0kl + 9t
- n™m
B L
=1- - (28)
nn

In Fig. 3 the corresponding QB length$E from the preced-

ing PT expressions have been plotted along with those ob-
tained by fitting the numerical results shown in Fig. 2 to the
expected linear functions, showing good agreement.
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FIG. 3. QB lengths 2> (in wavelength unitsin transmission vs 0 [ : : :
outgoing channem for the waveguide used in Fig. 2: Circles, 1 fﬁ:l (d)
=1; squaresn=2; diamondsn=3; triangles,n=4. Filled (open A 107" =3 —— m=3
symbols denote the numerical simulatigrerturbation theoryre-
sults.

The origin of such asymmetries lies in the surface-type

disorder that randomizes the wave propagation through the L/\
waveguide. If we look at the impurity matrig24), which
determines the scattering strength in E4®), it is obvious FIG. 4. Same as in Fig. 2 but fa¥/A=0.1.

that there are large quantitative differences jp, for distinct
values ofm andn. As a matter of fact, this matrix can be increased the surface roughnessste0.1\, so that this re-
rewritten as sult can be observed: the corresponding transmission coeffi-
cients, presented in Fig. 4, indeed confirm such behavior for
8d2 £(L) 2 a waveguide length=300\. Thus, the higher modes appear
Vmn=7 7 3 (Knkm) MM, (29 to be more strongly scattered. This is also manifested in the
overall behavior of the four outgoing channels depending on
whereM,, is the incident channel. Figure 4 reveals that, beyond the wave-
guide length given above, the transmission curves appear to
Lky be qualitatively similar for all incoming modes but shifted
Mn:2d K, (30 downward am is increased. The behavior of those transmis-
sion curves, following parallel exponential decays, is a sig-
Through a simple geometrical argument, as longdesd,  nature of the onset of localizatioft) due to the coherent
M, can be considered the number of times that mmdets  interference of multiple-scattered wavé®n the other hand,
(interacts with the rough wall on its way along the it s interesting to note that, if we zoom in Fig. 4 forQ
waveguide?® In the case thad/\ =2.25, it turns out that, for <100\, the transmission curves are qualitatively similar to
instance,M,~8.5M . This factor affects the impurity ma- those of Fig. 2.
trix not only for the outgoing mode throug¥i,,, but also for Thus, we have seen in Figs. 2 and 4 that the dependence
the incoming mode througiM,,. This gives a physically of the impurity matrix(29) on mode dispersion has signifi-
intuitive explanation of the results shown in Fig. 2, and of allcant quantitative consequences, and also strong qualitative
other processes that will be shown below. consequences for the properties of wave propagation through
For largerL multiple scattering becomes relevant. This surface-disordered waveguides. As has been demonstrated in
actually means that not only the scattering that brings energref. 23, it can give rise to an entangling of transport behav-
to modem from n should be taken into account, but also theiors within the same waveguide length. In Fig. 5, the
leakage fronm into other modes, as well as all interchangesdiagonal-transmission coefficierig,, from Fig. 4 are shown
betweeni andj for all i,j. As a result, the energy spreads in a log plot. The results have been fitted, where possible, to
over all modes: diffusioD) in the space of mode numbers the well-known behaviors: QB as in E(8), inverse power
takes placé? In fact, it is seen in Fig. 2 that all outgoing law expected for D,
channels tend to yield comparable transmission intensities
within the length of the plot, except for=1. 1D,
Furthermore, after a long propagation distance through <Tnn>%rv (32)
the waveguide so that mode conversion has sufficiently
populated all outgoing channels, we observe that>T,, and exponential decay associated with L. It is seen in Fig. 5
>T3,>T,4,. This waveguide length is not reached within that, within the interval 1&L/\<70, QB transport of the
the length scale covered in Fig. 2. Alternatively, we have(11) channel coexists with D for the83) and (44) channels;
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exponentiallL) decays are shown. 10° - =
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also, D of the(11) mode coexists with L of the44) channel . . . .
for L/\~10%. This confirms the coexistence of QB transport  FIG. 6. Typical decay lengthn wavelength unitsas functions

D, and L predicted in Ref. 23 for eight-mode WaveguideS'Of the height standard deviatia#t (in A2 units), obtained from the

nonetheless, in this four-mode waveguide the coexistence gféan-transmission intensitigsee text for d/A=2.25 anda/i
all three regimes within the same length region is not ob-=0-2. Circlesn=1; squaresn=2; diamondsn=3; triangles,n
served due to the limitation in mode-dispersion differences=4: (8 13y from numerical simulation datésymbols, asterisks
associated with the lower number of available modém denoting the conductand&®) and from perturbation theorisolid
the other hand, it should be noted that our results, not showtines); (b) I, (filed symbol3 andl, (open symbols andl" from
here, reveal such coexistence (QB-D or D-L) phenomené#he conductancéasteriskg
associated with surface-type disorder in the case of narrower

waveguides supporting only three or even two guided

modes] Interestingly, the impossibility of defining the D re- (INTop)~— |T
gime consistently for all outgoing modes at the same length nn
scale makes irrelevant any comparison with theories such aghe predicteds™ 2 behavior is seen in Fig.(8) for the QB

the macroscopic approach provided by the random-matriiecay lengths, showing reasonable agreement with the PT
theory (RMT),*?® which predicts(T,»=(g)/N? for all  results[cf. Eq. (28)]. Similar behavior is observed in Fig.
m,n. 6(b) for I° andlk, . It is interesting to note thdf, is dif-

In addition, Fig. 5 permits us to observe the crossoveferent for eachn, wheread |, coincides for alin. Thus, the
between different regimes for each mode separately.LFor well-known relationshig-=NIP is meaningless in this con-
<Igy, all four modes propagate almost ballistically. The text. (Althoughl“=NIZ, seems to hold instead; in fact, it has
transition from ballistic transport to D can be observed for allheen shown that if® is defined through the resistandé,
modes at the distinct waveguide lengths defined by the cor=N|P does holc®)

responding o, (see Fig. 6 beloyv Note that even though QB The normalized fluctuationsT /(T are shown in
and D regimes extend over differelntregions, in both cases Fig. 7. It is evident that there are differences among the
the regions are well defined by the magnitude of the transfluctuations for every channel, in agreement with the behav-
mission coefficient{T,,)~1 for QB and(T,,)~10"! for  jor of the mean values shown in Fig. 4; this corroborates the
D. This seems to indicate that, from the value of the averagqualitative argument given above in connection with the
transmission coefficient, the qualitative transport behavioasymmetry in the mode-scattering rates. Note that at the be-
can be roughly known, in agreement with Ref. 27, althoughyinning of the waveguide, mode conversion ime:n leads
there exist remarkable differences concerning the length dee a variance of unity for the corresponding off-diagonal
pendence and the entangling of regimes. Finally, cohererffuctuations, whereas the diagomai=n ballistic transport is
interference leads to L. In Fig. 5 all mod¢mode (11)  revealed through the result thgsT,,)~0. Furthermore,
barely] reach the L regime within the maximum length of the these diagonal fluctuations undergo the crossovers between
waveguidel a4y It should be remarked that, whereas theQB, D, and L regimes as discussed above in light of the
exponential decay rate is similar for al) the real onset of mean valuegsee Fig. 5. The (hn) fluctuations exhibit an
localization takes place at slightly different lengths: theincrease from 0 towards 1 as the transport gradually changes
lower n is, the longer the waveguide must be to observe L.from QB to D. The well-known speckle-pattern fluctuations
The dependence df?, I3, andly, on surface rough-  5T,./(T,.)~1 for all (mn) channels build up in the D re-
ness is shown in Fig. 6. In this respect, with the aim ofgime, steadily increasing above 1 as the mode becomes lo-
correctly defininglhn, the average of the logarithm of the calized. Therefore, the phenomenon of the QB-D and D-L
transmission has been used: coexistence can be recognized by comparing the diagonal

(32
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FIG. 7. Normalized fluctuations of the transmission intensities FIG. 8. Same as Fig. 4 but for the mean-reflection intensities
as functions of the length, for the same parameters as in Fig. 4. (Ro) T '
mn/ -

fluctuations with each other, corroborating the argumen%h flacti fficient. Enh d backscatteri .
given above in light of the results for the mean values in Fig, e refiection coetlicient. Enhanced backscatlering appears in

7the strong diffusivgor weak localizationregime as a result

pf the constructive interference of multiple-scattered paths;
nonetheless, the enhancement factor differs frqpré@dicted

by simple arguments, provided that the single-scattering con-
tribution is absent or negligible This comes as no surprise
inasmuch as each channel may behave differently, as re-

the noise accuragy Analogously, the rate of increase is vealed in the transmission coefficier(see Fig. 4 through

faster the highen is. These considerations corroborate thegies Z%tgrzgllggsO:e;{:(gisgr?rf:z;re\g:;nsislf iIther?sat\Ir:‘grlr):aﬁ)T;u%:’
rguments di ve on the m lectivity of th ; )
arguments discussed above on the mode selectivity of the "o factd?” larger than Jsee Fig. 8): although the

scattering strength in connection with the transmission inten- ; .
sities in Igig 4 9 background cannot be unambiguously definedR;,)

; - ~2.3Ry;) for any m#1]. Therefore, the reflection coeffi-
Let us now turn to the study of the reflection coefficients . mi 7 1496 - —1 -1
(Rmn- These are presented in Fig. 8 for the same Waveguid(éIents fail to satisfy** (Rpn)= (14 dm) N™H(1+N) "H(N

considered in Fig. 4. The peculiar scattering properties in- _
duced by surface disorder manifest themselves in an intricate reflection

5. For a sufficiently long waveguide, it can be seen in Fig.
that the normalized fluctuations tend to be larger the highe
the outgoing modenis. A linear increase for all channels is
observed?® For a given incoming moda, the rate of in-
crease is the same for all outgoing chanmajsionetheless,
the fluctuations appear to be larger the higheis (within

manner in the reflection channels also. For sufficiently short 10°
waveguide lengths, we expect that the reflection coefficients e
should increase linearly as predicted by PT, through the ex-
pressions: 10° L - 8
, e .8
26°KnKm L <
(Rmn>=Wg(|kn+km|)L=@- (33 8\510“ . A b4 n ol
- 2 ¢ B

These PT QB decay lengths in reflection and those obtained 10° | A .
from the numerical results are shown in Fig. 9. The agree- A <
ment is even better than in transmission, and the strong mode A
differences are indeed confirmed. Beyond the QB regime for 102 |
each incoming moda, the diagona(R,,,) is enhanced as the ; 5 s p

waveguide length increases, whereas the remaining off-
diagonal reflection coefficients exhibit differences with the
following tendency: the higher is the mode the larger is FIG. 9. Same as Fig. 3 but in reflection.

m
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FIG. 10. Same as Fig. 7 but for the normalized fluctuations of A 06 1 _',,.«-—”’f,_”—/'"":
the reflection intensities, including only the backscattered channels ?,‘ 04l Lo T et -7
. e PR e
and the(42) off-diagonal channel. E ;- T
02+, - - =
w I
—(g)). Figure 8 also seems to indicate that the onset of L 0.0 - <00 1000 1500
does not introduce significant changes in the reflection coef- L/

ficients, in agreement with Ref. 29.

It is interesting to analyze the normalized fluctuations of FIG. 11. Mean totala) reflection and(b) transmission intensi-
the reflection coefficientgsee Fig. 10 Leaving aside the ties, and(c) normalized fluctuations of the total transmission inten-
transient strong fluctuations for very short length scé#es  sities, as functions of the length for the same parameters as in
sociated with the fact that the corresponding reflection coefFig. 2.
ficients are small the diagonalm=n normalized fluctua-

tions diminish with increasing length, this decrease bemq:igure 12, which showsT,) in a logarithmic plot for a
. . e 1 n
steeper the highem is. Then thgy stfablllze about the valug four-mode waveguide analogous to that of Fig(tlbut
5R“n/<R””>h: 0.5 as the D reglmlt_a IS .reaCh_ﬁ?' apfdd'remalr\mth a rougher surface witid= 0.1\, illustrates this discus-
constalntv(\j/ f?n entering |r:t0 L e42regr:me. | 1 Oh- |ag_onagion_ To observe a definite transport regime in the total trans-
normalized fluctuationgonly the (42) channel is shown in  isgion either the transport regimes of the different outgo-
Fig. 10, since all the_rest are S”T'ﬂa'_"” the other hand, ing modes swap at certain length scales, or one of the
remain about t_he variance O.f unity linked to the spec!de-<-|-mn>,s predominates over all others. Note that even though
pattern fluctuations in reflection. Therefore, weak localiza+,o 1ost transparent mode gives the predominant contribu-
tion halves speckle pattern fluctuations in backscattering. tion from a quantitative standpoint, it is not at all evident that
the same is true for the qualitative behavifor instance, a
V. REFLECTANCE, TRANSMITTANCE, steeper, weak decay added to a larger, but smoother, back-
AND CONDUCTANCE ground would yield as a result a quantity whose magnitude is

) of the order of the latter, but whose qualitative behavior is
We have thus seen that wave propagation along a foulgiven by the former weak decayln principle, it can be

mode surface-disordered waveguide, due to the surface-tyRgsessed that transport will obviously be QB for lengths

disorder, unlike for volume disorder, displays anomalousshorter thanlQ®, namely, forL<IS8, as Fig. 12 reveals

properties in the transmission and reflection coefficients as fhrough the QB linear decaysee also Fig. § this can also
consequence of the mixture of QB, D, and L regimes for

different waveguide channels. Bearing in mind these proper-
ties, we now proceed to calculate the total transmis3ipn
reflectionR,,, and dimensionless conductang.e 10°
In Fig. 11, we plot the mean total reflectidiR,) and
transmission(T,) coefficients, along with the transmission
fluctuations 6T,,, in our four-mode waveguide withd
=0.03\. Itis evident that these quantities differ substantially

A
from one incoming mode to another. The largeis, the 610_1
larger the mean reflectance and the smaller the mean trans-
mittance (recall that energy conservation requires that =1
+T,=1). This could be qualitatively expected once again, @ [ ----- n=
at least in the limit of small waveguide lengths, in light of the ——— =3
n dependence of the impurity matr{29), which is stronger T
for incoming modes with larger transverse momentym 107 . : .
(highern). 10 100 1000

The overall transport properties of the waveguide for a L/r

given incoming moden can be understood through the be-  FIG. 12. Mean total-transmission intensitie,) as functions of

havior of the mean total transmissid¢m,) [see Fig. 1b)],  the lengthL in a log-log plot for the same parameters as in Fig. 4,
as the summation ofT,,,) over all outgoing channelm. including fits to the QB and L regimes.
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10 100 1000 0.0 ' ’
. . 0 500 1000 1500
L/A

<Ing>

FIG. 14. Conductance fluctuations for the waveguides used in
Fig. 13.

0 500 1000 1500

A which the(11) channel appears localized; this is seen in Fig.

13(b) (in those cases for which <L ,,,) through the linear
FIG. 13. (8 Mean dimensionless conductance as a function ofdecay of{Ing), and its departure from {g) (owing to the

the lengthL in a log-log plot for a waveguide widtd/A=2.25,  transition to log-normal statistics, for which the dominant

supporting four modes, with disorder paramete/3=0.2 and  contributions arise from the low-probability realizations that

6/\=0.02 (upper solid curvg 0.03 (dashed curve 0.04 (long  vyield large conductancéd)). Recall that, although the actual

dashed curvee 0.06(dot-dashed curye0.08(dotted curvé; and 0.1~ gnset of L thus appears at slightly different lengths, the lo-

(lower solid curve. Averages oveN,=4000 realizations. Fits 10 47 ation length for given roughness parameters as defined

the QB regimes are show(b) {In g) (without dot3 and INg) (with from Eq.(32) is the same for all modesr(n), and coincides

dot9 for 8/\ =0.08(dotted curvesand 0.1(solid curves, revealing - ) . ' .

the L regimes. with those for the transmittances and conductdse® Fig.

6(b)]. On the other hand, the absence of the D regime in the

be verified in Fig. 1(b). Conversely, the exponential decay conductance curves is explicitly displayed in Fig.(d3
associated with L appears beyond waveguide lengths foFhus an anomalous conductance crossover from QB to L
which the lowest (h) mode is localizedt,,, as seen in Fig. regimes is observed for the four-mode, surface-disordered
12 (see also Figs. 4 and).5Finally, unlike the QB and L waveguides with several roughness parameters used in ob-
regimes, which must always be encountered for sufficientijaining the results of Fig. 13, giving additional confirmation
small and large lengths, respectively, it is not obvious thavf the predictions of Ref. 23. Moreover, the conductance
the L~! dependencéD regime in the intermediate region fluctuations within this anomalous transition regime stabilize
between QB and L transport is observed. This effect is anin all cases shown in Fig. 14 at a valuég0.29), which
other manifestation of the entangling of different transportiies below the expected value of the quasi-1D universal con-
regimes of thgT,,,) due to the combination of surface-type ductance fluctuationUCF) for a well-defined D regime
disorder and large mode dispersion. In Fig. 12, where th¢s5g~0.364, cf. Refs. 10 and 12This lower value of the
length dependence ¢T ) is shown in a log scale, D should UCF has been also numerically found in Ref. 11, but no
manifest itself through a linear decpsf. Eq.(31)]. Itis seen  physical interpretation was given therein. When entering into
that this decay is practically absent for most incomingthe L regime, our results for the waveguides with rougher
modes. Only within a narrow waveguide length window for surfaces in Fig. 14 reveal that the conductance fluctuations
which the D length scales of the transmission coefficientsiecrease below the UCF region, as expedted.
swap, would the corresponding total transmission exhibit the Two comments are in order concerning the anomalous
expectedL ~! behavior. In any case, it is obvious that the QB-L crossover in the total transmission and conductance
average reflection and transmission coefficients fail to obeynentioned above. First, it should be emphasized that surface
the predicted dependence¢T,)=N"%g) and (R,) disorder is not a sufficient condition. Actually, in the case of
=N"1(N—(g)) in the weak localization or D regimé:>® surface-disordered waveguides with small mode dispersion
All these transmission properties, stemming from the mix-and/or strong intermode mixing, so that the D-like regimes
ing of QB, D, and L transports produced by surface disorderof different outgoing channels coexist, the ! diffusive de-
become even more pronounced in the dimensionless condupendence could also be observed. Nevertheless, even if such
tanceg. Figure 13a) shows a logarithmic plot ofg) for a D regime appears, our results still reveal an anomalous
four-mode waveguides with different surface roughness pabehavior, inasmuch as the mean total reflection and transmis-
rameterss/\ =0.02, 0.03, 0.04, 0.06, 0.08, and 0.1, whereassion fail to follow the predicted weak-localization length de-
(Ing) is plotted in Fig. 18b) [and also Ifg)] for the two  pendences, as pointed out above. As a second remark, it is
larger 6 values. The corresponding conductance fluctuationsvorth mentioning that the D-like regime is enhanced in the
are given in Fig. 14. Following the argument mentionedaverage resistancén which contributions from smaller
above for the total transmission, now the QB regime is retransmission coefficients predomingte contrast to the av-
stricted to the shortdiR2, in this casd $° [see Fig. 18)].  erage conductance. The results presented in Ref. 28 corrobo-
This is explicitly shown in Fig. @). Likewise, the true L rate these comments, which thus show no discrepancy with
behavior in the conductance is ensured for lengths beyondur results.
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VI. CONCLUSIONS We have also analyzed the effect of the entangling of QB,

The statistical-transport properties of classical wave? » and L transport on the qualitative behavior of the mean

propagating along surface-disordered waveguides have be I;im_smlttance and its quctugnons, showing an aqomalqus ef-
studied, with special emphasis on the distinctive imprint in-'€Ctivé QB-L crossover. This has also been confirmed in the
troduced by the surface-type disorder. For this purpose, theonductance calculatiori@verage and UGE for which the
invariant embedding equations for the matrices of reflectioinflueénce of the disorder strength has been shown.

and transmission amplitudes of the guided modes have been Finally, we would like to mention the very recent papers
obtained. By means of Monte Carlo simulation calculationsPy Garca-Martn etal. on the diffusion-localization

in such a manner that for every surface realization the cortransitiorf® and on the intensity distributiort$;* in nano-
responding system of coupled differential equations is nuwires with surface-disordered hard walls consisting of a
merically solved, the statistical quantities of interest are calhumber of slices with fixed length and random width, with
culated. We have focused on the mean reflection andimilarities to the problem dealt with here. Their numerical
transmission coefficients, reflectances, transmittances, amdsults, based on a generalized scattering-matrix formulation
conductance, along with their fluctuations. The interplay beexploiting mode matching at each slice, exhibit also the
tween mode conversion and the scattering processes praenisotropy of the scattering intensities, stressing, however,
duced by surface disorder results in new interesting effects ithe agreement of the statistics at each transport regime with
the physical quantities mentioned. the RMT predictions.

For a sufficiently long waveguide, transmission into  Experimentally, all these effects can be revealed in the
modes with lower transverse momentulower indexmac-  transmission intensities through metal microwave guides, for
cording to our notationis favored(exhibiting smaller nor-  \hich our theoretical boundary conditions apply very accu-
malized fluctuations no matter what the incoming mode  rately. As pointed out in Ref. 23, the appropriate geometry
is. The influence of the incoming modteis revealed in the  would be a planar waveguide with two metallic plates, one of
decrease of all the transmission coefficients for highdfor  them at least randomly rough, with feasible dimensions and
smaller waveguide lengths, we have confirmed, through thegughness parameter@s derived from the values used
analysis of the length dependence of the mean-transmissiqQRroughout this paper upon scaling them by the wavelength
coefficients and fluctuations in the case of four-modei the centimeter rangeSimilar waveguides but with tube
waveguides, the entangling of ballistic, diffusive, and local-geometry have been successfully employed in connection
ized transmission of modes within the same waveguide repth volume disordef’ Also, in the electromagnetic domain,
gion that was recently reported in Ref. 23 in the case ofyptical waveguides or fiberén the micron rangecould be
eight-mode waveguides. other experimental devicéS,accessible to such measure-

With regard to the reflection coefficients, enhanced backments, where the predictions of our calculations can manifest
scattering is observed when the rough waveguide is longhemselves, although in order to make rigorous quantitative
enough, and the enhancement factor, as defined by the rati@mparisons the boundary conditions might have to be re-
min[(R,)/(Rmw], can be larger than 2. In fact, the nondiago-yised. Furthermore, the propagation of acoustic waves or
nal reflection coefficients tend to be smaller for the reﬂecte(bther classical waves through confined geometries with ap-
modes with lowem for all incoming modes\. The reflected  propriate randomness can be adequately accounted for by
SpeCkle patterns exhibit reduced fluctuations in baCkscattebur formu'ation' and thus similar phenomena m|ght be ex-
ing (6Rnn)/(Ran)~0.5, whereas the expected value of 1 ispected therein. The conductance calculations can be also of

approximately obtained for other reflected channets ( interest in the electronic transport through nanowires.
#n). Both averages and fluctuations behave similarly

throughout the D and L regimes.

The.transmittange, nf';lmely3 the norm_alized total energy ACKNOWLEDGMENTS
transmitted for a given incoming mode is larger for the
lower modesn. It should be noted that, in spite of the small  J.A.S.G. is grateful to A. GaratMartn, J. A. Torres, J. J.
strength of the random component that is present on one &znz, and M. Nieto-Vesperinas for valuable discussions,
the waveguide planes, very strong reflectan@éghe order and acknowledges support from the Spanish CSIC, DGES
of or larger than 90%can be observed for sufficiently long Grant No. PB97-1221 and CICYT Grant No. TIC95-0563-
waveguides. This could be relevant in multimode, opticalCO5-03. The work of A.A.M. was supported in part by
waveguides with spuriously rough boundaries over longArmy Research Office Grant No. DAAH 04-96-1-0187.
propagation distances, where it constitutes an unwantelV.Y. gratefully acknowledges support by EPSRC Grant
effect™ No. GR/K95505.

1K. B. Efetov, Supersymmetry in Disorder and Cha@ambridge 4V. Tripathi and D. E. Khmelnitskii, Phys. Rev. B8, 1122

University Press, Cambridge, England, 1297 (1998.
2K. B. Efetov, Adv. Phys32, 53(1984. ) SYa. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev.
3B. A. Muzykantskii and D. E. Khmelnitskii, Pis'ma Zh.k&p. Lett. 80, 4161(1998.

Teor. Fiz.62, 68 (1995 [JETP Lett.62, 76 (1995)]. 6Scattering and Localization of Classical Waves in Random Me-



PRB 59 REFLECTION AND TRANSMISSION OF WAVESN . .. 5925

dia, edited by P. Shen@Norld Scientific, Singapore, 1990 20\, Stoytchev and A. Z. Genack, Phys. Rev. L&8, 309(1997.
V. Freilikher and S. Gredeskul, Prog. OB0, 137 (1992. 21p. W. Brouwer, Phys. Rev. B7, 10 526(1997.
8p. Shenglntroduction to Wave Scattering, Localization and Me- 22N, Makarov and I. Yurkevich, Zh! Esp. Teor. Fiz.96, 1106
soscopic Phenomer(&cademic, San Diego, 1995 (1989 [Sov. Phys. JETP69, 628 (1989]; A. Krokhin, N.
°P. A. Lee and T. V. Ramakrishnam, Rev. Mod. Ph§g, 287 Makarov, V. Yampolskii, and I. Yurkevich, Physica B
(1989; Mesoscopic Phenomena in Solidslited by B. L. Alt- 1658166, 855 (1990; V. Freilikher, M. Pustilnik, and I.
shuler, P. A. Lee, and R. A. Weliblorth-Holland, Amsterdam, Yurkevich, Phys. Rev. LetZ3, 810 (1994).
1991. 233, A. Sachez-Gil, V. Freilikher, I. Yurkevich, and A. A. Maradu-

04, Tamura and T. Ando, Phys. Rev.4, 1792(1991); T. Ando
and H. Tamuraibid. 46, 2332(1992.

11K, Nikoli¢ and A. MacKinnon, Phys. Rev. B0, 11 008(1994).

12p Garca-Mochales, P. A. Serena, N. Garcand J. L. Costa-
Kramer, Phys. Rev. B3, 10268(1996; P. Garta-Mochales
and P. A. Serena, Phys. Rev. L&, 2316(1997).

133, A. Torres and J. J."8az, Phys. Rev. Letf7, 2245(1996.

din, Phys. Rev. Lett80, 948 (1998.

243. A. Samchez-Gil and M. Nieto-Vesperinas, J. Opt. Soc. AnB8,A
1270(1991); Phys. Rev. B45, 8623(1992.

25F, Bass, V. Freilikher, and I. Fuks, IEEE Trans. Antennas Propag.
22, 288(1974.

26K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett.

14C.\W. J. Beenakker, Rev. Mod. Phy8g, 731 (1997. 59 2475(1987); P: A. Mello, E. Akkermar(;s, and B. Shapiro,
15| Edrei, M. Kaveh, and B. Shapiro, Phys. Rev. L@®, 2120 |de.6l, 459(198?‘9, E. Bascones, M. J. CalderpD. Castelo, T.
(1989. Lopez, and J. J. @az, Phys. Rev. 555, R11 911(1997).
16J. F. de Boer, M. C. W. van Rossum, M. P. van Albada, Th. M.”"A- Garc'-a-Mart'n, J. A. Torres, J. J. '®az, and M. Nieto-
Nieuwenhuizen, and A. Lagendijk, Phys. Rev. L&t 2567 Vesperinas, Phys. Rev. Le80, 4165(1998.
(1994). ZBA. Garce-Martn, J. A. Torres, J. J. ‘8az, and M. Nieto-
Th. M. Nieuwenhuizen and M. C. W. van Rossum, Phys. Rev. Vesperinas, Appl. Phys. Letl.1, 1912(1997.
Lett. 74, 2674(1995. 29A. Garca-Marfn, T. Lopez-Ciudad, J. J. ‘8az, and M. Nieto-
8E. Kogan and M. Kaveh, Phys. Rev.52, R3813(1995. Vesperinas, Phys. Rev. Le&1, 329(1998.

195, A. van Langen, P. W. Brouwer, and C. W. J. Beenakker, Phys>°F. Ladouceur and L. Poladian, Opt. Leftl, 1833(1996.
Rev. E53, 1344(1997.



