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The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by
means of numerical simulations based on the invariant embedding equations. In particular, we analyze the
influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection
and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects
stemming from the combination of mode dispersion and rough-surface scattering: For a given waveguide
length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects
manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering en-
hancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in
the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface
scattering in quasi-one-dimensional structures~waveguides! gives rise to the coexistence of the ballistic,
diffusive, and localized regimes within the same sample.@S0163-1829~99!09103-1#
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I. INTRODUCTION

The statistical properties of disordered systems is a
and long-standing problem that attracts many efforts b
theoretical and experimental. In quantum solid-state phy
much attention is paid to statistics of eigenfunctions and
genvalues of closed disordered systems. Disorder in so
state problems is usually represented by impurities that
randomly distributed over the whole sample. For this sor
mesoscopic samples with ‘‘bulk disorder’’ the number
well-established statistical characteristics is enormous~see,
for example, Ref. 1, and references therein!. The success o
mesoscopics may be ascribed to the existence of the no
ears model put forward by Efetov.2 Although it is a remark-
able tool for studying mesoscopic effects, thes model has,
however, restricted validity. For example, the system s
must be much greater than the mean free path. Genera
tion to chaotic ballistic systems~i.e., quantum billiards! has
recently become a topic of great interest. Progress in
direction has become possible due to the recently propo
field theory for quantum ballistics.3 By exploiting the tool,
the authors of Refs. 4 and 5 managed to treat different c
elators in a clean system within an extremely chaotic lim
when the typical relaxation time is of the order of the flig
time ~diffusive boundary scattering!. They found that naive
substitution of the mean free path for the system size
correlators obtained for bulk disorder would give wrong
sults for the ballistic case, and that, in fact, systems with b
and surface disorder are not equivalent.
PRB 590163-1829/99/59~8!/5915~11!/$15.00
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In this paper we address the problem of a ballistic syst
that is disordered in the sense that there are no bulk sca
ers, and the only place where scattering occurs is at a ro
boundary. We choose to explore not the statistics of the
genvalues of completely closed systems~like resonators or
quantum dots!, but the statistical properties of scattering a
reflecting amplitudes in bounded, but open in one directi
systems~waveguiding structures!. The key entities for this
problem are the transmission and reflection amplitud
More specifically, we consider aN-mode waveguide with the
boundary corrugated within a finite interval (L), and study
the statistical properties of the transmission through, and
flection from, the disordered segment of the waveguide. T
problem arises naturally in the characterization of transp
properties related to, for instance, optical waveguides
fibers, remote sensing, radio wave propagation, sonar, s
low water waves, and geophysical probing.6,7 On the other
hand, it describes as well the electronic transport in me
scopic systems,8,9 being especially relevant to conductance
nanowires.10–13

The analogous problem with bulk scatterers was
dressed by many authors~see, for example, Refs. 6, 8, 14
and references therein!. For a waveguide with bulk disorde
all transmission coefficientsTmn ~subindexesn andm stand
for the number of the incident and transmitted mode, resp
tively! behave in a similar way. Due to the strong intermo
mixing all information about then dependence is washed o
after a few scattering events, which means that forL of the
order of the scattering lengthl ~and larger! all modes cross
over from the ballistic regime to diffusion, and all channe
5915 ©1999 The American Physical Society
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become identical. As a result, there exists only one cha
teristic length scale for all transmittances, the so-called
calization length, that is believed to be equal toNl. In the
case L!Nl, each Tmn obeys Rayleigh statistics; as th
length L increases, all channels~modes! undergo the same
changes, and atL@Nl the crossover to the log-normal dis
tribution ~typical for the localized regime! takes place.15–21It
might seem that the only distinction of the problem with
rough surface from that with bulk disorder is that the sc
tering process takes place in a reduced effective volu
which should lead just to a decrease of the mode mixing r
Naive considerations would suggest that if we introduce
new localization length~which obviously must be much
longer than that for the bulk scattering!, all results well
known for the ‘‘bulk’’ problem should be valid for the ‘‘sur
face’’ case after proper rescaling. However, the situation
different and much more complicated.

The goal of the present paper is to study the statist
properties of waves transmitted through and reflected fro
waveguide with rough boundaries. The length dependen
of the reflection and transmission amplitudes for each r
ization of the surface profile are numerically obtained
solving a system of linear differential equations based on
invariant embedding equations.22 Then we calculate the en
semble average and fluctuations of the reflection and tr
mission coefficients, reflectance, transmittance, and con
tance. It is shown in this paper that the interplay betwe
mode dispersion and surface scattering gives rise to m
unusual ~at least from the point of view of the intuition
gained from studies of the volume scattering! effects; one of
such effects, the coexistence of different transport regime
a certain length scale, has been previously reported.23

This paper is organized as follows. In Sec. II the theor
ical formulation leading to the invariant embedding equ
tions for the matrices of the reflection and transmission a
plitudes is developed. The description of the numeri
implementation of those equations for the particular wa
guide geometry chosen here is detailed in Sec. III. The
sults thus obtained for the average and fluctuations of
reflection and transmission coefficients are presented
discussed in Sec. IV, whereas those for the total reflec
and transmission, and conductance, appear in Sec. V.
relevant conclusions derived from this paper are summar
in Sec. VI.

II. THEORY

We start from the wave equation

~D1k2!C~R!50, ~1!

with the boundary conditions

C~R5Rs!5H 0 for x,0 and x.L

2j~R!•
]C~R!

]R
for 0<x<L,

~2a!

~2b!

given on the unperturbed waveguide surfaceR5Rs, which
is translationally invariant along thex axis @R5(x,r )#. The
boundary condition~2! corresponds either to a waveguid
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surface with a random admittancej, or to the Dirichlet
boundary condition on a slightly perturbed waveguide s
face,j denoting the random perturbation. In the latter ca
the boundary condition~2! is an approximate one, containin
the first two terms in the expansion of the exact~Dirichlet!
boundary condition about the unperturbed surface.

Outside the region 0<x<L the solutions of the scatterin
problem under consideration have the form

Cn~x,r !5(
m

1

Akm

xm~r !e2 ikmxtmn , x,0, ~3a!

Cn~x,r !5
1

Akn

xn~r !e2 iknx1(
m

1

Akm

xm~r !eikmxr mn ,

x.L. ~3b!

The indexesm,n correspond to the outgoing and incomin
modes, respectively, andxn(r ) are the eigenfunctions of th
transverse wave equation

S ]2

]r2
1kn

2D xn~r !50, ~4!

with kn5Ak22kn
2.

By assuming thatj5jn , the boundary condition~2! can
be also rewritten as

C~Rs!1j~Rs!F~Rs!50, ~5!

where the normal derivative

F~Rs![n~Rs!•F]C~R!

]R G
R5Rs

[
]C

]n
~6!

is introduced, withn(Rs) being the normal to the unper
turbed surfaceR5Rs.

Let us employ Green’s theorem in the form

C~R!5E d3R8
]

]R8
•FC~R8!

]G0~R8,R!

]R8

2
]C~R8!

]R8
G0~R8,R!G , ~7!

where the integral is taken over any region containing
point R and located inside the waveguide. The most con
nient integration region is the unperturbed waveguide surf
cut by two planes normal to the axis of the waveguide~they
are included too!. The left ~right! cross section must be
placed to the left~right! of the pointR5(x,r ). The integral
in Eq. ~7! can then be expressed as the sum of the integ
over the cross sections and the unperturbed waveguide
face with constraint 0<x8<L:

C~R!5E dS8•C~Rs8!F ]G0~R8,R!

]R8
G

R85Rs8

1I cross. ~8!

The integralI cross over the cross sections may be easily c
culated from Eqs.~3! and the Green’s function
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G0~R,R8!5 (
m51

N
xm~r !xm~r 8!

2ikm
eikmux2x8u. ~9!

Then Eq.~8! takes the form

Cn~R!5
1

Akn

xn~r !e2 iknx1E dS8•Cn~Rs8!

3F ]G0~R8,R!

]R8
G

R85Rs8

. ~10!

The ~oriented! surface elementdS can be written asdS
5n dS, dS5dx ds. The explicit form of the differentialds
depends on the geometry under consideration (ds5r df for
circular cross sections,dydz for rectangular cross section
etc.!. Then we can rewrite Eq.~10! as

Cn~R!5
1

Akn

xn~r !e2 iknx1E
0

L

dx8 R ds8Cn~x8,r s8!

3
]G0~x8,x;r s8 ,r !

]n8
. ~11!

Two conclusions can be derived from Eq.~11!. First, the
matrix of the reflection coefficients can be written@after sub-
stituting the explicit expression forG0 from Eq. ~9!# in the
form

r mn5
1

2i E0

L

dx R ds
1

Akm

fm~r !e2 ikmxCn~x,r s!, ~12!

or @by the use of Eq.~5!# as

r mn52
1

2i E0

L

dx R dsfm~x,s!j~x,s!Fn~x,s!, ~13!

where

fn~x,s!5
1

Akn

n~r s!•F]xn~r !

]r G
r5rs

e2 iknx.

The second result we derive from Eq.~11! @by differentiat-
ing, settingR on the surface, and substituting the bounda
condition ~5!# is a closed equation forFn(x,s):

Fn~x,s!5fn~x,s!2E
0

L

dx8 R ds8j~x8,s8!

3Fn~x8,s8!G09~x8,x;s8,s!. ~14!

HereG09 is the mixed normal derivative

G09~x8,x;s8,s!5
]2G0

]n]n8
5

1

2i(
1

kn

]xn

]n

]xn

]n8
eiknux2x8u.

Differentiation of Eq.~14! yields
y

]Fn~x,s!

]L
5(

m
fm~x,s!amn2E

0

L

dx8 R ds8j~x8,s8!

3
]Fn~x8,s8!

]L
G09~x8,x;s8,s!, ~15!

amn52
1

2i R ds8fm* ~L,s!j~L,s!Fn~L,s!. ~16!

By comparing Eq.~15! with Eq. ~14! we obtain the relation
between the derivative]Fn(x,s)/]L and the functions
$Fm(x,s)%:

]Fn~x,s!

]L
5(

m
Fm~x,s!amn . ~17!

With the aid of the latter equation, we now differentiate t
matrix of reflection coefficients Eq.~13!:

drmn

dL
52

1

2i R dsfm~L,s!j~L,s!Fn~L,s!

2
1

2i E0

L

dx R dsfm~x,s!j~x,s!(
m

Fm~x,s!amn .

~18!

By substituting the explicit expressions forFm(x,s) from
Eqs.~3b! and ~6!, and collecting all terms, we arrive at

dr̂

dL
5

i

2
~e2 i k̂L1 r̂ eik̂L!v̂~e2 i k̂L1eik̂Lr̂ !. ~19a!

Here k̂5diag(kn) and

vmn5 R dsfm~s!j~L,s!fn~s!,

fn~s!5
1

Akn
F]xn~r !

]r G
r5rs

.

Analogous algebra leads to the equation for the matrix
transmission coefficients:

d t̂

dL
5

i

2
t̂ eik̂Lv̂~e2 i k̂L1eik̂Lr̂ !. ~19b!

From the reflection and transmission amplitudes, we
fine the reflection and transmission intensities, respective

Rmn5ur mnu2, Tmn5utmnu2, ~20!

which yield the intensity coupled into themth outgoing
channel in reflection and transmission, respectively, fo
given nth incoming channel. The reflectance and transm
tance for thenth incident mode are

Rn5(
m

Rnm , Tn5(
m

Tnm . ~21!

Finally, the total transmitted intensity in the case that
incoming channels are incoherently populated, which
equivalent to the dimensionless conductance for electron
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g5(
n

Tn . ~22!

III. NUMERICAL CALCULATIONS

For the numerical simulations we choose the simplest
ometry ~see Fig. 1!: two parallel planesz50 andz5d with
one-dimensional~1D! deviationsj5j(x) on one plane (z
50) only, wherej is a 1D stochastic process. Thus, t
transverse eigenfunctions acquire the form

xn~z!5A2

d
sin~knz!, kn5

pn

d
, kn5AS v

c D 2

2kn
2,

~23!

and the impurity matrix becomes

vmn~L !5
2

d

knkm

~knkm!1/2
j~L !. ~24!

The 2N32N system of linear differential equations~19!
is solved numerically by means of the sixth-order Run
Kutta method. For each realizationj(x) ~of lengthLmax) of
an ensemble of randomly rough surface profiles, the matr
of reflection and transmission amplitudes are calculated
functions of the lengthL. These realizations obey Gaussi
statistics ~with d the rms height! with zero mean and a
Gaussian correlation function

W~ ux2x8u!5d22^j~x!j~x8!&5exp@2a22~x2x8!2#,
~25!

wherea is the transverse correlation length. The correspo
ing surface-power spectrum is thus given by

g~Q!5p1/2a exp@2~Qa!2/4#. ~26!

The ensemble of surface realizations are numerically ge
ated as described in Ref. 24. By averaging overNp such
realizations, the mean valueŝA& and fluctuationsdA
5(^A2&2^A&2)1/2 of the relevant physical quantities are o
tained. Hereafter we consider, unless otherwise state
waveguide of thicknessd52.25l supportingN54 guided
modes.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS

In Fig. 2 the^Tmn& are shown~in a semilogarithmic scale!
for L<Lmax51500l. Averaging was carried out over th
results obtained forNp54000 realizations of the surface pro
file, whose roughness parameters area50.2l and d
50.03l. The asymmetry in the behavior of the differe
outgoing channelsm is evident from this plot. The intensity

FIG. 1. Illustration of the waveguide geometry.
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-
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a

of the incoming modêTnn& decreases with length for alln,
this decrease being steeper the larger the transverse mo
tum kn , namely, the largern. The transmission into othe
nondiagonal channelsmÞn also depends strongly on th
modem. In the beginning of the waveguide, this nondiagon
transmission slightly increases from zero, being stronger
higher modesm (^Tm11,n&.^Tmn&, with m11,mÞn). In
this situation onlysinglescattering is important, and we refe
to this regime as quasiballistic~QB!. In accordance with the
results of the perturbation theory~PT! the intensity of mode
m is proportional to the cross section for roughness-indu
scattering from moden into modem, and to the lengthL, as
follows:

^Tmn&5
2d2knkm

d2~knkm!1/2
g~ ukn2kmu!L[

L

l mn
QB

. ~27!

For the diagonal transmission, PT predicts

^Tnn&512L
2d2

d2 (
m51

N
knkm

~knkm!1/2
@g~ ukn2kmu!1g~ ukn1kmu!#

[12
L

l nn
QB

. ~28!

In Fig. 3 the corresponding QB lengthsl mn
QB from the preced-

ing PT expressions have been plotted along with those
tained by fitting the numerical results shown in Fig. 2 to t
expected linear functions, showing good agreement.

FIG. 2. Mean-transmission intensities^Tmn& as functions of
length L in semilogarithmic scale for a waveguide of widthd/l
52.25, supporting four modes, with disorder parametersa/l50.2
and d/l50.03: ~a! incident moden51; ~b! n52; ~c! n53; ~d!
n54. Averaged overNp54000 realizations.



p
th

e

e

-

al

is
rg

he
e
s

rs
g
itie

g
nt

in
v

effi-
for

ar
the
on
ve-
r to

is-
ig-
t

to

nce
-
tive
ugh
ed in
av-
he

, to

. 5

PRB 59 5919REFLECTION AND TRANSMISSION OF WAVES IN . . .
The origin of such asymmetries lies in the surface-ty
disorder that randomizes the wave propagation through
waveguide. If we look at the impurity matrix~24!, which
determines the scattering strength in Eqs.~19!, it is obvious
that there are large quantitative differences invmn for distinct
values ofm and n. As a matter of fact, this matrix can b
rewritten as

vmn5
8d2

L2

j~L !

d
~knkm!1/2MmMn , ~29!

whereMn is

Mn5
Lkn

2dkn
. ~30!

Through a simple geometrical argument, as long asd!d,
Mm can be considered the number of times that modem hits
~interacts with! the rough wall on its way along th
waveguide.23 In the case thatd/l52.25, it turns out that, for
instance,M4'8.5M1 . This factor affects the impurity ma
trix not only for the outgoing mode throughMm , but also for
the incoming mode throughMn . This gives a physically
intuitive explanation of the results shown in Fig. 2, and of
other processes that will be shown below.

For largerL multiple scattering becomes relevant. Th
actually means that not only the scattering that brings ene
to modem from n should be taken into account, but also t
leakage fromm into other modes, as well as all interchang
betweeni and j for all i , j . As a result, the energy spread
over all modes: diffusion~D! in the space of mode numbe
takes place.25 In fact, it is seen in Fig. 2 that all outgoin
channels tend to yield comparable transmission intens
within the length of the plot, except forn51.

Furthermore, after a long propagation distance throu
the waveguide so that mode conversion has sufficie
populated all outgoing channels, we observe thatT1n.T2n
.T3n.T4n . This waveguide length is not reached with
the length scale covered in Fig. 2. Alternatively, we ha

FIG. 3. QB lengthsl mn
QB ~in wavelength units! in transmission vs

outgoing channelm for the waveguide used in Fig. 2: Circles,n
51; squares,n52; diamonds,n53; triangles,n54. Filled ~open!
symbols denote the numerical simulation~perturbation theory! re-
sults.
e
e
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increased the surface roughness tod50.1l, so that this re-
sult can be observed: the corresponding transmission co
cients, presented in Fig. 4, indeed confirm such behavior
a waveguide lengthL>300l. Thus, the higher modes appe
to be more strongly scattered. This is also manifested in
overall behavior of the four outgoing channels depending
the incident channel. Figure 4 reveals that, beyond the wa
guide length given above, the transmission curves appea
be qualitatively similar for all incoming modesn, but shifted
downward asn is increased. The behavior of those transm
sion curves, following parallel exponential decays, is a s
nature of the onset of localization~L! due to the coheren
interference of multiple-scattered waves.~On the other hand,
it is interesting to note that, if we zoom in Fig. 4 for 0,L
,100l, the transmission curves are qualitatively similar
those of Fig. 2.!

Thus, we have seen in Figs. 2 and 4 that the depende
of the impurity matrix~29! on mode dispersion has signifi
cant quantitative consequences, and also strong qualita
consequences for the properties of wave propagation thro
surface-disordered waveguides. As has been demonstrat
Ref. 23, it can give rise to an entangling of transport beh
iors within the same waveguide length. In Fig. 5, t
diagonal-transmission coefficientsTnn from Fig. 4 are shown
in a log plot. The results have been fitted, where possible
the well-known behaviors: QB as in Eq.~28!, inverse power
law expected for D,

^Tnn&'
l nn
D

L
, ~31!

and exponential decay associated with L. It is seen in Fig
that, within the interval 10,L/l,70, QB transport of the
~11! channel coexists with D for the~33! and~44! channels;

FIG. 4. Same as in Fig. 2 but ford/l50.1.
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also, D of the~11! mode coexists with L of the~44! channel
for L/l'103. This confirms the coexistence of QB transpo
D, and L predicted in Ref. 23 for eight-mode waveguid
nonetheless, in this four-mode waveguide the coexistenc
all three regimes within the same length region is not
served due to the limitation in mode-dispersion differen
associated with the lower number of available modes.@On
the other hand, it should be noted that our results, not sh
here, reveal such coexistence (QB-D or D-L) phenom
associated with surface-type disorder in the case of narro
waveguides supporting only three or even two guid
modes.# Interestingly, the impossibility of defining the D re
gime consistently for all outgoing modes at the same len
scale makes irrelevant any comparison with theories suc
the macroscopic approach provided by the random-ma
theory ~RMT!,14,26 which predicts ^Tmn&5^g&/N2 for all
m,n.

In addition, Fig. 5 permits us to observe the crosso
between different regimes for each mode separately. FoL
, l 44

QB , all four modes propagate almost ballistically. T
transition from ballistic transport to D can be observed for
modes at the distinct waveguide lengths defined by the
respondingl nn

D ~see Fig. 6 below!. Note that even though QB
and D regimes extend over differentL regions, in both case
the regions are well defined by the magnitude of the tra
mission coefficient:̂ Tnn&'1 for QB and^Tnn&'1021 for
D. This seems to indicate that, from the value of the aver
transmission coefficient, the qualitative transport behav
can be roughly known, in agreement with Ref. 27, althou
there exist remarkable differences concerning the length
pendence and the entangling of regimes. Finally, cohe
interference leads to L. In Fig. 5 all modes@mode ~11!
barely# reach the L regime within the maximum length of th
waveguideLmax. It should be remarked that, whereas t
exponential decay rate is similar for alln, the real onset of
localization takes place at slightly different lengths: t
lower n is, the longer the waveguide must be to observe

The dependence ofl nn
QB , l nn

D , and l nn
L on surface rough-

ness is shown in Fig. 6. In this respect, with the aim
correctly definingl nn

L , the average of the logarithm of th
transmission has been used:7

FIG. 5. Mean-diagonal transmission intensities^Tnn& as in Fig.
4 in a log-log plot. Fits to linear~QB!, L21 ~D, with dots!, and
exponential~L! decays are shown.
t
;
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f

^ ln Tnn&'2
L

l nn
L

. ~32!

The predictedd22 behavior is seen in Fig. 6~a! for the QB
decay lengths, showing reasonable agreement with the
results @cf. Eq. ~28!#. Similar behavior is observed in Fig
6~b! for l nn

D and l nn
L . It is interesting to note thatl nn

D is dif-
ferent for eachn, whereasl nn

L coincides for alln. Thus, the
well-known relationshipl L5NlD is meaningless in this con
text. ~Although l L5Nl11

D seems to hold instead; in fact, it ha
been shown that ifl D is defined through the resistance,l L

5NlD does hold.28!
The normalized fluctuationsdTmn /^Tmn& are shown in

Fig. 7. It is evident that there are differences among
fluctuations for every channel, in agreement with the beh
ior of the mean values shown in Fig. 4; this corroborates
qualitative argument given above in connection with t
asymmetry in the mode-scattering rates. Note that at the
ginning of the waveguide, mode conversion intomÞn leads
to a variance of unity for the corresponding off-diagon
fluctuations, whereas the diagonalm5n ballistic transport is
revealed through the result that^dTnn&'0. Furthermore,
these diagonal fluctuations undergo the crossovers betw
QB, D, and L regimes as discussed above in light of
mean values~see Fig. 5!. The (nn) fluctuations exhibit an
increase from 0 towards 1 as the transport gradually chan
from QB to D. The well-known speckle-pattern fluctuatio
dTnn /^Tnn&'1 for all (mn) channels build up in the D re
gime, steadily increasing above 1 as the mode become
calized. Therefore, the phenomenon of the QB-D and D
coexistence can be recognized by comparing the diag

FIG. 6. Typical decay lengths~in wavelength units! as functions
of the height standard deviationd2 ~in l2 units!, obtained from the
mean-transmission intensities~see text! for d/l52.25 anda/l
50.2. Circles,n51; squares,n52; diamonds,n53; triangles,n
54. ~a! l nn

QB from numerical simulation data~symbols, asterisks
denoting the conductancel QB) and from perturbation theory~solid
lines!; ~b! l nn

D ~filled symbols! and l nn
L ~open symbols!, andl L from

the conductance~asterisks!.



en
ig
.
he
is

is
he
t

en

ts
uid
in

ca
o
n
e

in
ee
o
fo

e
o
he

rs in
t
hs;

on-
e

re-

gh,
en-

-

ie
.

ties

PRB 59 5921REFLECTION AND TRANSMISSION OF WAVES IN . . .
fluctuations with each other, corroborating the argum
given above in light of the results for the mean values in F
5. For a sufficiently long waveguide, it can be seen in Fig
that the normalized fluctuations tend to be larger the hig
the outgoing modem is. A linear increase for all channels
observed.10 For a given incoming moden, the rate of in-
crease is the same for all outgoing channelsm; nonetheless,
the fluctuations appear to be larger the higherm is ~within
the noise accuracy!. Analogously, the rate of increase
faster the highern is. These considerations corroborate t
arguments discussed above on the mode selectivity of
scattering strength in connection with the transmission int
sities in Fig. 4.

Let us now turn to the study of the reflection coefficien
^Rmn&. These are presented in Fig. 8 for the same waveg
considered in Fig. 4. The peculiar scattering properties
duced by surface disorder manifest themselves in an intri
manner in the reflection channels also. For sufficiently sh
waveguide lengths, we expect that the reflection coefficie
should increase linearly as predicted by PT, through the
pressions:

^Rmn&5
2d2knkm

d2~knkm!1/2
g~ ukn1kmu!L[

L

l mn
QB

. ~33!

These PT QB decay lengths in reflection and those obta
from the numerical results are shown in Fig. 9. The agr
ment is even better than in transmission, and the strong m
differences are indeed confirmed. Beyond the QB regime
each incoming moden, the diagonal̂Rnn& is enhanced as th
waveguide length increases, whereas the remaining
diagonal reflection coefficients exhibit differences with t
following tendency: the higher is the modem, the larger is

FIG. 7. Normalized fluctuations of the transmission intensit
as functions of the lengthL, for the same parameters as in Fig. 4
t
.
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the reflection coefficient. Enhanced backscattering appea
the strong diffusive~or weak localization! regime as a resul
of the constructive interference of multiple-scattered pat
nonetheless, the enhancement factor differs from 2~predicted
by simple arguments, provided that the single-scattering c
tribution is absent or negligible!. This comes as no surpris
inasmuch as each channel may behave differently, as
vealed in the transmission coefficients~see Fig. 4! through
the entangling of transport regimes. Interestingly enou
this anomalous reflection can result in an anomalous
hancement factor,29 larger than 2@see Fig. 8~a!: although the
background cannot be unambiguously defined,^R11&
'2.3̂ Rm1& for any mÞ1#. Therefore, the reflection coeffi
cients fail to satisfy14,26 ^Rmn&5(11dmn)N

21(11N)21(N

s FIG. 8. Same as Fig. 4 but for the mean-reflection intensi
^Rmn&.

FIG. 9. Same as Fig. 3 but in reflection.
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2^g&). Figure 8 also seems to indicate that the onset o
does not introduce significant changes in the reflection c
ficients, in agreement with Ref. 29.

It is interesting to analyze the normalized fluctuations
the reflection coefficients~see Fig. 10!. Leaving aside the
transient strong fluctuations for very short length scales~as-
sociated with the fact that the corresponding reflection co
ficients are small!, the diagonalm5n normalized fluctua-
tions diminish with increasing length, this decrease be
steeper the highern is. Then they stabilize about the valu
dRnn /^Rnn&50.5 as the D regime is reached, and rem
constant when entering into the L regime. The off-diago
normalized fluctuations@only the ~42! channel is shown in
Fig. 10, since all the rest are similar#, on the other hand
remain about the variance of unity linked to the speck
pattern fluctuations in reflection. Therefore, weak locali
tion halves speckle pattern fluctuations in backscattering

V. REFLECTANCE, TRANSMITTANCE,
AND CONDUCTANCE

We have thus seen that wave propagation along a f
mode surface-disordered waveguide, due to the surface-
disorder, unlike for volume disorder, displays anomalo
properties in the transmission and reflection coefficients a
consequence of the mixture of QB, D, and L regimes
different waveguide channels. Bearing in mind these prop
ties, we now proceed to calculate the total transmissionTn ,
reflectionRn , and dimensionless conductanceg.

In Fig. 11, we plot the mean total reflection^Rn& and
transmission̂ Tn& coefficients, along with the transmissio
fluctuations dTn , in our four-mode waveguide withd
50.03l. It is evident that these quantities differ substantia
from one incoming mode to another. The largern is, the
larger the mean reflectance and the smaller the mean tr
mittance ~recall that energy conservation requires thatRn
1Tn51). This could be qualitatively expected once aga
at least in the limit of small waveguide lengths, in light of th
n dependence of the impurity matrix~29!, which is stronger
for incoming modes with larger transverse momentumkn
~highern).

The overall transport properties of the waveguide fo
given incoming moden can be understood through the b
havior of the mean total transmission^Tn& @see Fig. 11~b!#,
as the summation of̂Tmn& over all outgoing channelsm.

FIG. 10. Same as Fig. 7 but for the normalized fluctuations
the reflection intensities, including only the backscattered chan
and the~42! off-diagonal channel.
L
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Figure 12, which showŝTn& in a logarithmic plot for a
four-mode waveguide analogous to that of Fig. 11~b! but
with a rougher surface withd50.1l, illustrates this discus-
sion. To observe a definite transport regime in the total tra
mission, either the transport regimes of the different out
ing modes swap at certain length scales, or one of
^Tmn& ’s predominates over all others. Note that even thou
the most transparent mode gives the predominant contr
tion from a quantitative standpoint, it is not at all evident th
the same is true for the qualitative behavior~for instance, a
steeper, weak decay added to a larger, but smoother, b
ground would yield as a result a quantity whose magnitud
of the order of the latter, but whose qualitative behavior
given by the former weak decay!. In principle, it can be
assessed that transport will obviously be QB for leng
shorter thanl nn

QB , namely, forL< l nn
QB , as Fig. 12 reveals

through the QB linear decays~see also Fig. 5!; this can also

f
ls

FIG. 11. Mean total~a! reflection and~b! transmission intensi-
ties, and~c! normalized fluctuations of the total transmission inte
sities, as functions of the lengthL, for the same parameters as
Fig. 2.

FIG. 12. Mean total-transmission intensities^Tn& as functions of
the lengthL in a log-log plot for the same parameters as in Fig.
including fits to the QB and L regimes.
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be verified in Fig. 11~b!. Conversely, the exponential deca
associated with L appears beyond waveguide lengths
which the lowest (1n) mode is localizedl 1n

L , as seen in Fig.
12 ~see also Figs. 4 and 5!. Finally, unlike the QB and L
regimes, which must always be encountered for sufficien
small and large lengths, respectively, it is not obvious t
the L21 dependence~D regime! in the intermediate region
between QB and L transport is observed. This effect is
other manifestation of the entangling of different transp
regimes of thê Tmn& due to the combination of surface-typ
disorder and large mode dispersion. In Fig. 12, where
length dependence of^Tn& is shown in a log scale, D shoul
manifest itself through a linear decay@cf. Eq. ~31!#. It is seen
that this decay is practically absent for most incomi
modes. Only within a narrow waveguide length window f
which the D length scales of the transmission coefficie
swap, would the corresponding total transmission exhibit
expectedL21 behavior. In any case, it is obvious that th
average reflection and transmission coefficients fail to o
the predicted dependenceŝTn&5N21^g& and ^Rn&
5N21(N2^g&) in the weak localization or D regime.14,26

All these transmission properties, stemming from the m
ing of QB, D, and L transports produced by surface disord
become even more pronounced in the dimensionless con
tanceg. Figure 13~a! shows a logarithmic plot of̂g& for
four-mode waveguides with different surface roughness
rametersd/l50.02, 0.03, 0.04, 0.06, 0.08, and 0.1, where
^ ln g& is plotted in Fig. 13~b! @and also ln̂g&# for the two
largerd values. The corresponding conductance fluctuati
are given in Fig. 14. Following the argument mention
above for the total transmission, now the QB regime is
stricted to the shorterl nn

QB , in this casel 44
QB @see Fig. 13~a!#.

This is explicitly shown in Fig. 6~a!. Likewise, the true L
behavior in the conductance is ensured for lengths bey

FIG. 13. ~a! Mean dimensionless conductance as a function
the lengthL in a log-log plot for a waveguide widthd/l52.25,
supporting four modes, with disorder parametersa/l50.2 and
d/l50.02 ~upper solid curve!, 0.03 ~dashed curve!, 0.04 ~long
dashed curve!, 0.06~dot-dashed curve!, 0.08~dotted curve!, and 0.1
~lower solid curve!. Averages overNp54000 realizations. Fits to
the QB regimes are shown.~b! ^ ln g& ~without dots! and ln̂g& ~with
dots! for d/l50.08~dotted curves! and 0.1~solid curves!, revealing
the L regimes.
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which the~11! channel appears localized; this is seen in F
13~b! ~in those cases for whichl L<Lmax) through the linear
decay of^ ln g&, and its departure from ln^g& ~owing to the
transition to log-normal statistics, for which the domina
contributions arise from the low-probability realizations th
yield large conductances7,11!. Recall that, although the actua
onset of L thus appears at slightly different lengths, the
calization length for given roughness parameters as defi
from Eq.~32! is the same for all modes (mn), and coincides
with those for the transmittances and conductance@see Fig.
6~b!#. On the other hand, the absence of the D regime in
conductance curves is explicitly displayed in Fig. 13~a!.
Thus an anomalous conductance crossover from QB t
regimes is observed for the four-mode, surface-disorde
waveguides with several roughness parameters used in
taining the results of Fig. 13, giving additional confirmatio
of the predictions of Ref. 23. Moreover, the conductan
fluctuations within this anomalous transition regime stabil
in all cases shown in Fig. 14 at a value (dg'0.29), which
lies below the expected value of the quasi-1D universal c
ductance fluctuations~UCF! for a well-defined D regime
(dg'0.364, cf. Refs. 10 and 12!. This lower value of the
UCF has been also numerically found in Ref. 11, but
physical interpretation was given therein. When entering i
the L regime, our results for the waveguides with rough
surfaces in Fig. 14 reveal that the conductance fluctuati
decrease below the UCF region, as expected.10,11

Two comments are in order concerning the anomal
QB-L crossover in the total transmission and conducta
mentioned above. First, it should be emphasized that sur
disorder is not a sufficient condition. Actually, in the case
surface-disordered waveguides with small mode dispers
and/or strong intermode mixing, so that the D-like regim
of different outgoing channels coexist, theL21 diffusive de-
pendence could also be observed. Nevertheless, even if
a D regime appears, our results still reveal an anomal
behavior, inasmuch as the mean total reflection and trans
sion fail to follow the predicted weak-localization length d
pendences, as pointed out above. As a second remark,
worth mentioning that the D-like regime is enhanced in t
average resistance~in which contributions from smaller
transmission coefficients predominate!, in contrast to the av-
erage conductance. The results presented in Ref. 28 corr
rate these comments, which thus show no discrepancy
our results.

f

FIG. 14. Conductance fluctuations for the waveguides use
Fig. 13.
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VI. CONCLUSIONS

The statistical-transport properties of classical wa
propagating along surface-disordered waveguides have
studied, with special emphasis on the distinctive imprint
troduced by the surface-type disorder. For this purpose,
invariant embedding equations for the matrices of reflect
and transmission amplitudes of the guided modes have b
obtained. By means of Monte Carlo simulation calculatio
in such a manner that for every surface realization the c
responding system of coupled differential equations is
merically solved, the statistical quantities of interest are c
culated. We have focused on the mean reflection
transmission coefficients, reflectances, transmittances,
conductance, along with their fluctuations. The interplay
tween mode conversion and the scattering processes
duced by surface disorder results in new interesting effect
the physical quantities mentioned.

For a sufficiently long waveguide, transmission in
modes with lower transverse momentum~lower indexm ac-
cording to our notation! is favored~exhibiting smaller nor-
malized fluctuations!, no matter what the incoming moden
is. The influence of the incoming moden is revealed in the
decrease of all the transmission coefficients for highern. For
smaller waveguide lengths, we have confirmed, through
analysis of the length dependence of the mean-transmis
coefficients and fluctuations in the case of four-mo
waveguides, the entangling of ballistic, diffusive, and loc
ized transmission of modes within the same waveguide
gion that was recently reported in Ref. 23 in the case
eight-mode waveguides.

With regard to the reflection coefficients, enhanced ba
scattering is observed when the rough waveguide is l
enough, and the enhancement factor, as defined by the
min@^Rnn&/^Rmn&#, can be larger than 2. In fact, the nondiag
nal reflection coefficients tend to be smaller for the reflec
modes with lowerm for all incoming modesn. The reflected
speckle patterns exhibit reduced fluctuations in backsca
ing (dRnn)/^Rnn&'0.5, whereas the expected value of 1
approximately obtained for other reflected channelsm
Þn). Both averages and fluctuations behave simila
throughout the D and L regimes.

The transmittance, namely, the normalized total ene
transmitted for a given incoming moden, is larger for the
lower modesn. It should be noted that, in spite of the sma
strength of the random component that is present on on
the waveguide planes, very strong reflectances~of the order
of or larger than 90%! can be observed for sufficiently lon
waveguides. This could be relevant in multimode, opti
waveguides with spuriously rough boundaries over lo
propagation distances, where it constitutes an unwan
effect.30
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We have also analyzed the effect of the entangling of Q
D, and L transport on the qualitative behavior of the me
transmittance and its fluctuations, showing an anomalous
fective QB-L crossover. This has also been confirmed in
conductance calculations~average and UCF!, for which the
influence of the disorder strength has been shown.

Finally, we would like to mention the very recent pape
by Garcı´a-Martı́n et al. on the diffusion-localization
transition28 and on the intensity distributions,27,29 in nano-
wires with surface-disordered hard walls consisting of
number of slices with fixed length and random width, wi
similarities to the problem dealt with here. Their numeric
results, based on a generalized scattering-matrix formula
exploiting mode matching at each slice, exhibit also t
nonisotropy of the scattering intensities, stressing, howe
the agreement of the statistics at each transport regime
the RMT predictions.

Experimentally, all these effects can be revealed in
transmission intensities through metal microwave guides,
which our theoretical boundary conditions apply very acc
rately. As pointed out in Ref. 23, the appropriate geome
would be a planar waveguide with two metallic plates, one
them at least randomly rough, with feasible dimensions a
roughness parameters~as derived from the values use
throughout this paper upon scaling them by the wavelen
in the centimeter range!. Similar waveguides but with tube
geometry have been successfully employed in connec
with volume disorder.20 Also, in the electromagnetic domain
optical waveguides or fibers~in the micron range! could be
other experimental devices,30 accessible to such measur
ments, where the predictions of our calculations can mani
themselves, although in order to make rigorous quantita
comparisons the boundary conditions might have to be
vised. Furthermore, the propagation of acoustic waves
other classical waves through confined geometries with
propriate randomness can be adequately accounted fo
our formulation, and thus similar phenomena might be
pected therein. The conductance calculations can be als
interest in the electronic transport through nanowires.
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Krämer, Phys. Rev. B53, 10 268 ~1996!; P. Garcı´a-Mochales
and P. A. Serena, Phys. Rev. Lett.79, 2316~1997!.

13J. A. Torres and J. J. Sa´enz, Phys. Rev. Lett.77, 2245~1996!.
14C. W. J. Beenakker, Rev. Mod. Phys.69, 731 ~1997!.
15I. Edrei, M. Kaveh, and B. Shapiro, Phys. Rev. Lett.62, 2120

~1989!.
16J. F. de Boer, M. C. W. van Rossum, M. P. van Albada, Th.

Nieuwenhuizen, and A. Lagendijk, Phys. Rev. Lett.73, 2567
~1994!.

17Th. M. Nieuwenhuizen and M. C. W. van Rossum, Phys. R
Lett. 74, 2674~1995!.

18E. Kogan and M. Kaveh, Phys. Rev. B52, R3813~1995!.
19S. A. van Langen, P. W. Brouwer, and C. W. J. Beenakker, Ph

Rev. E53, 1344~1997!.
.

.

s.

20M. Stoytchev and A. Z. Genack, Phys. Rev. Lett.79, 309~1997!.
21P. W. Brouwer, Phys. Rev. B57, 10 526~1997!.
22N. Makarov and I. Yurkevich, Zh. E´ ksp. Teor. Fiz.96, 1106

~1989! @Sov. Phys. JETP69, 628 ~1989!#; A. Krokhin, N.
Makarov, V. Yampolskii, and I. Yurkevich, Physica B
165&166, 855 ~1990!; V. Freilikher, M. Pustilnik, and I.
Yurkevich, Phys. Rev. Lett.73, 810 ~1994!.

23J. A. Sánchez-Gil, V. Freilikher, I. Yurkevich, and A. A. Maradu
din, Phys. Rev. Lett.80, 948 ~1998!.

24J. A. Sánchez-Gil and M. Nieto-Vesperinas, J. Opt. Soc. Am. A8,
1270 ~1991!; Phys. Rev. B45, 8623~1992!.

25F. Bass, V. Freilikher, and I. Fuks, IEEE Trans. Antennas Prop
22, 288 ~1974!.

26K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Le
59, 2475 ~1987!; P. A. Mello, E. Akkermans, and B. Shapiro
ibid. 61, 459~1988!; E. Bascones, M. J. Caldero´n, D. Castelo, T.
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