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Spontaneous Emission in Chaotic Cavities
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The spontaneous emission rate Γ of a two-level atom inside a chaotic cavity fluctuates strongly
from one pomt to another because of fluctuations in the local density of modes For a cavity with
perfectly conducting walls and an openmg contammg N wave channels, the distnbution of Γ is given
by Ρ(Γ) <* rw/2~'(T + Γο)"^"1, where Γ0 is the fiee-space rate For small 7V the most probable value
of Γ is much smaller than the mean value Γ0 [50031-9007(97)04001-5]

PACS numbers 42 50 -p, 05 45 +b, 32 80 -t

The modification of the rate of spontaneous emission
in a cavity has been a subject of extensive icsearch [1-
8] It was shown that the cavity can both enhance and
mhibit the spontaneous emission at microwave and optical
frequencies The effect is due to a modification by the
environment of the local density of modes at the position
of the ladiatmg atom The efforts were concentrated on
the fabncation of cavities of prescnbed regulär shape, the
atoms bemg kept close to nodes or antmodes of the field
pattems of the cavity modes

What can be said if the shape of the cavity is not regulär
and the exact position of the atom is unknown9 Irregulär
cavities have a complicated "chaotic" field pattern, and it
becomes difficult to state whether the spontaneous emis-
sion rate Γ of a paiticulai atom is increased 01 decreased
with lespect to the free-space late ΓΟ = i/2a>o/37reo^c3

(corresponding to an electnc dipole transition with mo-
ment d, frequency ωό) Nevertheless, a precise Statement
can be made about the statistical distnbution of Γ The
distubution is universal, i e , mdependent of the shape or
size of the cavity, provided it is chaotic

A chaotic cavity is laige compared to the wavelength
ΛΟ = 27rc/a>o, and has a shape such mal the light is
scattered umformly m phase space (In a cnculai 01 cubic
cavity, chaotic behavior may still occur because of diffuse
boundaiy scatteung or due to landomly placed scattenng
centers ) The only paiametei which enters the distnbution
of Γ/Γο is the strength of the couphng of the cavity modes
to the outside world We assume that the couphng is via
a hole that is small compared to the size of the cavity and
transmits a total of N wave channels (Foi a hole of area
A, N = 2ττΑ/λο) Our result for the distnbution of Γ
takes the universal form

Ρ(Γ)
(Γ

(D

shown in Fig l for seveial values of N The distnbution
eventually becomes nairow and Gaussian foi N » l,
while it is still bioad and stiongly non-Gaussian foi N äs
laige äs 10 The mean value of Γ equals ΓΟ, but the most
probable value is smaller than Γ0

As a possible experimental setup, one can imagme an
array of cavities, each contammg a few excited atoms,
01 a smgle cavity contammg many excited atoms (widely
sepaiated so that they decay mdependently) The array of
cavities might occur naturally m a porous matenal Let
n(t) be the number of atoms that has not decayed by the
time t The fraction n(t)/n(0) is the Laplace transform
/^ί/ΓΡ(Γ)εχρ(-Γί) of the distnbution (1), which is
a confluent hypergeometnc function A time-resolved
measmement of the emitted intensity yields n(t) and
theieby the probabihty distnbution P (T) Fluctuations of
the spontaneous emission rate give rise to an algebraic
decay n(t) ~N/2

for large t, mstead of the usual
exponential decay <* exp(-IV)

We pioceed with the denvation of Eq (1) We assume
that the System is in the perturbative regime [9], so that
the rate of spontaneous emission is given by the Fermi
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FIG l Probability distnbution of the spontaneous emission
late Γ (normahzed by the free-space rate ΓΟ), äs given
by Eq (1) foi several values of the number 7V of wave
channels transmitted by the hole in the cavity For TV a 2
the distnbution reaches its maximum at a rate Γ = Fo(7V —
2)/(7V + 4) that is smallei than the mean value Γ0 The
vaiiance of Γ diverges for 7V s 2 and equals 4Fo/(7V — 2)
for larger 7V The dashed curve is the result (15) for a hole
much smaller than a wavelength (transmittance T = 0 1)
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We first compute the distnbution of the vector ΰ =
B~lu, which is given by Eq (13) with the delta func-
tion replaced by δ (v — B~lu) The result is P (v) «
(l + \v\2)~N~l Because of rotational mvanance of the
Gaussian distnbution for M, the distnbutions of χ and \v\2

are the same Hence P(x) = jdv P(v)5(x - \v\2) <*
xN/2~l(l + x)~N~l This is the result (1) announced m
the mtioduction and plotted in Fig l It decieases mono-
tonically for N ^ 2, and has a maximum at nonzeio Γ for
larger N

This calculation holds for the so-called orthogonal
symmetiy class (symmetry mdex β = 1), relevant for
optical Systems with time-ieversal symmetry The local
density of states for Systems with broken time-ieversal
symmetry (unitary class, β = 2) or with broken spm-
lotational symmetry (symplectic class, β = 4) is lelevant
in Condensed matter physics We have repeated our

calculations for β = 2,4 and found P^
P(l\x) given by Eq (1)

So far we have assumed that the hole m the cavity
fully transmits at least one wave channel, so that the
transmittance T of the hole (the ratio of the tiansmitted
and incident power) is £ l If the hole is smallei than a
wavelength, then T becomes <1 The scattermg matrix
S (T) of the cavity coupled by a hole with tiansmittance
T < l can be expressed m terms of the scattermg matrix

S\T=i

PßltM, with

S(T) =
l +

(14)

To find the distnbution of the local density of modes,
we statt from Eq (8) with S replaced by S (T), repeat
similai Steps, and average ovei S\T=I = ειφ at the end
The result is

r
Ja

χ
- T T cos φ

[l + x(2 - T + 2V1 - Tcos<j>)/T]2 '
(15)

plotted also m Fig l (dashed line, foi T = 0 1) It
decreases monotonically for any T < l

The vanance {(Γ - Γ0)
2) diverges if 7V < 2 but

the diveigency is removed when we take into ac-
count the condition of apphcabihty of the Fermi
golden rule (2) The peiturbative treatment is valid
äs long äs the decay rate Γ of the excited atom re-
mains smaller than the width γμ of the cavity modes
conüibutmg to the decay Estimating the width of
the main contnbutmg mode äs l/pΎ = Γο/ΥροΎ,
we get a condition Γ <iC (Γο/ρο^)1/'2 Therefoie,
any divergent contnbution of the large Γ tail should
be cut off at Γ = (Γ0/ρ0Ύ)ι/2 The weight of the
tail is neghgibly small provided (r0/poV)1//2 » ΓΟ,

hence if FopoV = d2wQΎ/9·π3eofic6 <SC l To
estimate this parameter, we wnte d = zeag (ÜB is
the Bohr radms), ω0 = 2ττα/λ0, Ύ = L3 Then
Topo'V « 32U2a|L3/Ao is close to l for z = 0 17,
L = 0 53 mm, AO = 530 nm We can get laige loom
for apphcabihty of Eqs (1) and (15) by gomg to weaker
(possibly magnetic) dipoles, smaller cavities, or larger
(possibly miciowave) wavelengths

We conclude with a comparison with previous work
on the local density of states in chaotic cavities [lΙ-
Ο] That work was motivated by different physical
applications (Kmght shift m NMR or optical absorption)
Our apphcation is in a sense dual to that of Ref [13],
where comphcated electronic states mteract with simple
ladiation states Instead, we have the simplest possible
electronic System—a two level atom—and a comphcated
structure of ladiation modes In Refs [11-13] it was
assumed that the cavity was coupled to the outside via
a tunnel barner of laige aiea In this case statistical
fluctuations m the broadening of the levels γμ (from
level to level and from cavity to cavity) can be ignored
In the case of a relatively small openmg, consideied
here, fluctuations of the γμ'& aie essential The resultmg
distnbution (1) of the local density of modes tuins out
to be very simple, compared with the result of Ref [13]
(mvolving a fivefold integial in the case of unbroken
time-reveisal symmetry) We obtamed oui result within
the framewoik of landom-matnx theory It would be
mterestmg to see if it can be repioduced usmg the
supersymmetiy technique of Refs [11,13]
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