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The spontaneous emission rate I' of a two-level atom inside a chaotic cavity fluctuates strongly

from one point to another because of fluctuations in the local density of modes

For a cavity with

perfectly conducting walls and an opening containing N wave channels, the distribution of T' 1s given
by P(T") o« T'N/2=Y(T + T4)™¥~1, where Iy 1s the fiee-space rate  For small N the most probable value

of I 1s much smaller than the mean value I'y

PACS numbers 42 50 —p, 0545 +b, 32 80 -t

The modification of the rate of spontaneous emission
m a cavity has been a subject of extensive iesearch [1-
8] It was shown that the cavity can both enhance and
mhibit the spontaneous emission at microwave and optical
frequencies The effect 1s due to a modification by the
environment of the local density of modes at the position
of the 1adiating atom The efforts were concentrated on
the fabrication of cavities of prescribed regular shape, the
atoms being kept close to nodes or antinodes of the field
patteins of the cavity modes

What can be said 1if the shape of the cavity 1s not regular
and the exact position of the atom 1s unknown? Irregular
cavities have a complicated “‘chaotic” field pattern, and 1t
becomes difficult to state whether the spontaneous emus-
ston rate I' of a particular atom 1s increased o1 decreased
with 1espect to the free-space 1ate Iy = d2w8/37r€0hc3
(corresponding to an electric dipole transitton with mo-
ment d, frequency wg) Nevertheless, a precise statement
can be made about the statistical distribution of I'  The
distiibution 1s universal, 1 e , independent of the shape or
size of the cavity, provided 1t 1s chaotic

A chaotic cavity 1s laige compared to the wavelength
Ao = 27c/wp, and has a shape such that the hght 1s
scattered uniformly 1n phase space (In a cucular o1 cubic
cavity, chaotic behavior may still occur because of diffuse
boundary scattering or due to 1andomly placed scattering
centers ) The only patameter which enters the distribution
of I' /T 1s the strength of the coupling of the cavity modes
to the outside world We assume that the coupling 1s via
a hole that 1s small compared to the size of the cavity and
transmuts a total of N wave channels (For a hole of area
A, N =27A/ A%) Our result for the distuibution of T’
takes the untversal form

N/2-1
(' + Tyv+1>

shown in Fig 1 for seveial values of N The distiibution
eventually becomes nairow and Gaussian for N > 1,
while 1t 1s still broad and stiongly non-Gaussian for N as
laige as 10 The mean value of I' equals [, but the most
probable value 1s smaller than I'y

P(I) « 1)
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As a possible experimental setup, one can 1magine an
array of cavities, each contaming a few excited atoms,
o1 a single cavity containing many excited atoms (widely
sepatated so that they decay imdependently) The array of
cavities might occur naturally in a porous material Let
n(t) be the number of atoms that has not decayed by the
time ¢ The fraction n(t)/n(0) 1s the Laplace transform
fao dl' P(I) exp(~T't) of the distribution (1), which 1s
a confluent hypergeometric function A time-resolved
measuiement of the emitted intensity yields n(f) and
thereby the probability distribution P(I')  Fluctuations of
the spontaneous emisston rate give rise to an algebraic
decay n(r) « 1™/ for large f, mstead of the usual
exponential decay o« exp(—1I'gt)

We proceed with the derivation of Eq (1) We assume
that the system 1s 1n the perturbative regime [9], so that
the rate of spontaneous emission 1s given by the Fermu

FIG 1 Probability distribution of the spontaneous emission
tate I' (normalized by the free-space rate T'y), as given
by Eq (1) for several values of the number N of wave
channels transmitted by the hole 1n the cavity For N =2
the distribution reaches its maximum at a rate I' = Io(NV —
2)/(N + 4) that 1s smaller than the mean value Iy The
vanance of I" diverges for N =< 2 and equals 4T3/(N — 2)
for larger N The dashed curve 1s the result (15) for a hole
much smalier than a wavelength (transmmttance 7 = 0 )
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We first compute the distribution of the vector ¥ =
B~'%, which 1s given by Eq (13) with the delta func-
tion replaced by 8@ — B~ ') The result 1s P(d)
(1 + [9]2)™M~! Because of rotational mvaiiance of the
Gaussian distribution for z, the distitbutions of x and 9]
are the same Hence P(x) = [dv P(D)6(x — |9]?) «
*¥/27Y1 + x)™¥~1  This 1s the result (1) announced m
the mtioduction and plotted m Fig 1 It decieases mono-
tonically for N = 2, and has a maximum at nonzeio I" for
larger N

This calculation holds for the so-called orthogonal
symmetty class (symmetry index B = 1), relevant for
optical systems with time-ieversal symmetry The local
density of states for systems with broken time-ieversal
symmetry (unitary class, 8 = 2) or with broken spin-
1otational symmetry (symplectic class, 8 = 4) 1s 1elevant

m condensed matter physics We have repeated our

calculations for 8 = 2,4 and found Pl(vﬁ ) = P(ﬁl,)\;(x), with

PW(x) given by Eq (1)

So far we have assumed that the hole in the cavity
fully transmuts at least one wave channel, so that the
transmuttance T of the hole (the ratio of the ttansmutted
and incident power) 1s =1 If the hole 1s smaller than a
wavelength, then 7" becomes <1 The scattering matrix
S(T) of the cavity coupled by a hole with tiansnuttance
T < 1 can be expressed m terms of the scattering matrix
Slr=1

Slp=1 + V1 =T
S(T) =
) 1+ Slp=v1 =T (14

To find the distribution of the local density of modes,
we start from Eq (8) with § replaced by S(T), repeat
simular steps, and average ovet S|r—; = e'? at the end
The result 15

2 ko

V2T +2JT= Tcos ¢

~ [1+x(2~—T+2J1 = Tcos)/T]’
15)

plotted also i Fig 1 (dashed line, for T =01) It
decreases monotonically for any 7 < 1

The variance {((I"' — I'p)?) diverges if N <2 but
the diveigency 1S removed when we take into ac-
count the condition of applicability of the Fermi
golden rule (2) The perturbative treatment 1s valid
as long as the decay rate I' of the excited atom re-
mains smaller than the width vy, of the cavity modes
contiibuting to the decay  Estimating the width of
the mamn contributing mode as 1/p YV = Iy/Tpy V,
we get a condition I' < (To/po V)2  Therefore,
any divergent contribution of the large I' tail should
be cut off at I' = (T'y/po V)'/> The weight of the
tarl 1s negligibly small provided (Tg/po V)2 > Ty,

hence if TopoV = d?w) V/9m3ephc® <« 1 To
estimate this parameter, we write d = zeap (ap 1s
the Bohr radws), wg = 2mc/Ag, V =L> Then
TopoV = 321z2a3L3/A3 1s close to 1 for z =017,

=053 mm, Ag = 530 nm We can get laige 1oom
for applicability of Eqs (1) and (15) by going to weaker
(possibly magnetic) dipoles, smaller cavities, or larger
(possibly miciowave) wavelengths

We conclude with a comparison with previous work
on the local density of states i chaotic cavities [11-
13] That work was motivated by different physical
applications (Kmight shift in NMR or optical absorption)
Our application 1s 1n a sense dual to that of Ref [13],
where complicated electronic states interact with sumple
1adiation states Instead, we have the simplest possible
electronic system—a two level atom-—and a complicated
structure of 1adiation modes In Refs [11-13] 1t was
assumed that the cavity was coupled to the outside via
a tunnel barrier of laige atea In this case statistical
fluctuations 1n the broadening of the levels vy, (from
level to level and from cavity to cavity) can be 1gnored
In the case of a relatively smail opening, considered
here, fluctuations of the y,,’s ate essential The resulting
distribution (1) of the local density of modes tuins out
to be very simple, compared with the resuit of Ref [13]
(involving a fivefold integial in the case of unbroken
time-revelsal symmetry) We obtamed ow result within
the framewotk of 1andom-matrix theory It would be
interesting to see if it can be repioduced using the
supersymmet1y technique of Refs [11,13]
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