11,252 research outputs found

    Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    Get PDF
    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure

    Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts

    Get PDF
    © 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (≤7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs was∼100-fold lower than that of bone-forming osteoblasts and cultures treated withβ-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio

    Exact relativistic stellar models with liquid surface. I. Generalizing Buchdahl's n=1n=1 polytrope

    Full text link
    A family of exact relativistic stellar models is described. The family generalizes Buchdahl's n=1 polytropic solution. The matter content is a perfect fluid and, excluding Buchdahl's original model, it behaves as a liquid at low pressures in the sense that the energy density is non-zero in the zero pressure limit. The equation of state has two free parameters, a scaling and a stiffness parameter. Depending on the value of the stiffness parameter the fluid behaviour can be divided in four different types. Physical quantities such as masses, radii and surface redshifts as well as density and pressure profiles are calculated and displayed graphically. Leaving the details to a later publication, it is noted that one of the equation of state types can quite accurately approximate the equation of state of real cold matter in the outer regions of neutron stars. Finally, it is observed that the given equation of state does not admit models with a conical singularity at the center.Comment: 19 pages, 12 figures (16 eps files), LaTeX2e with the standard packages amssymb, amsmath, graphicx, subfigure, psfra

    Self-tuning of the cosmological constant

    Full text link
    Here, I discuss the cosmological constant (CC) problems, in particular paying attention to the vanishing cosmological constant. There are three cosmological constant problems in particle physics. Hawking's idea of calculating the probability amplitude for our Universe is peaked at CC = 0 which I try to obtain after the initial inflationary period using a self-tuning model. I review what has been discussed on the Hawking type calculation, and present a (probably) correct way to calculate the amplitude, and show that the Kim-Kyae-Lee self-tuning model allows a finite range of parameters for the CC = 0 to have a singularly large probability, approached from the AdS side.Comment: 12 pages with 8 figure

    Curie-Weiss model of the quantum measurement process

    Get PDF
    A hamiltonian model is solved, which satisfies all requirements for a realistic ideal quantum measurement. The system S is a spin-\half, whose zz-component is measured through coupling with an apparatus A=M+B, consisting of a magnet \RM formed by a set of N≫1N\gg 1 spins with quartic infinite-range Ising interactions, and a phonon bath \RB at temperature TT. Initially A is in a metastable paramagnetic phase. The process involves several time-scales. Without being much affected, A first acts on S, whose state collapses in a very brief time. The mechanism differs from the usual decoherence. Soon after its irreversibility is achieved. Finally the field induced by S on M, which may take two opposite values with probabilities given by Born's rule, drives A into its up or down ferromagnetic phase. The overall final state involves the expected correlations between the result registered in M and the state of S. The measurement is thus accounted for by standard quantum statistical mechanics and its specific features arise from the macroscopic size of the apparatus.Comment: 5 pages Revte

    Disseminated bacillus Calmette-Guérin (BCG): a cause of delirium in an older adult

    Get PDF
    Intra-vesical Bacillus Calmette-Guérin (BCG) immunotherapy is an effective treatment for high-risk bladder cancer. Less well known is that fewer than 1% of patients receiving BCG treatment can develop disseminated BCG. The reaction can range from a mild flu-like illness to a systemic disorder with a fulminant course which in the most severe cases can lead to death. The diagnostic yield is low and diagnosis is often made after a comprehensive exclusion of more common causes of pyrexia of unknown origin. A high level of suspicion is therefore required in those who may be at risk. We report a case of disseminated BCG in an older patient for whom early involvement of his family was pertinent to determining the precipitant for delirium

    Information preserving structures: A general framework for quantum zero-error information

    Get PDF
    Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e.g., "noiseless", "unitarily correctible", etc.) and introduce two new and natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational critera, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.Comment: 29 pages, 19 examples. Contains complete proofs for all the theorems in arXiv:0705.428

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ0≈0.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-J⊥J_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    Quasinormal Modes, the Area Spectrum, and Black Hole Entropy

    Get PDF
    The results of canonical quantum gravity concerning geometric operators and black hole entropy are beset by an ambiguity labelled by the Immirzi parameter. We use a result from classical gravity concerning the quasinormal mode spectrum of a black hole to fix this parameter in a new way. As a result we arrive at the Bekenstein - Hawking expression of A/4lP2A/4 l_P^2 for the entropy of a black hole and in addition see an indication that the appropriate gauge group of quantum gravity is SO(3) and not its covering group SU(2).Comment: 4 pages, 2 figure

    The Constraints in Spherically Symmetric General Relativity II --- Identifying the Configuration Space: A Moment of Time Symmetry

    Get PDF
    We continue our investigation of the configuration space of general relativity begun in I (gr-qc/9411009). Here we examine the Hamiltonian constraint when the spatial geometry is momentarily static (MS). We show that MS configurations satisfy both the positive quasi-local mass (QLM) theorem and its converse. We derive an analytical expression for the spatial metric in the neighborhood of a generic singularity. The corresponding curvature singularity shows up in the traceless component of the Ricci tensor. We show that if the energy density of matter is monotonically decreasing, the geometry cannot be singular. A supermetric on the configuration space which distinguishes between singular geometries and non-singular ones is constructed explicitly. Global necessary and sufficient criteria for the formation of trapped surfaces and singularities are framed in terms of inequalities which relate appropriate measures of the material energy content on a given support to a measure of its volume. The strength of these inequalities is gauged by exploiting the exactly solvable piece-wise constant density star as a template.Comment: 50 pages, Plain Tex, 1 figure available from the authors
    • …
    corecore