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Abstract. – A Hamiltonian model is solved, which satisfies all requirements for a realistic ideal
quantum measurement. The system S is a spin- 1

2
, whose z-component is measured through

coupling with an apparatus A = M + B, consisting of a magnet M formed by a set of N � 1
spins with quartic infinite-range Ising interactions, and a phonon bath B at temperature T .
Initially A is in a metastable paramagnetic phase. The process involves several time-scales.
Without being much affected, A first acts on S, whose state collapses in a very brief time.
The mechanism differs from the usual decoherence. Soon after its irreversibility is achieved.
Finally, the field induced by S on M, which may take two opposite values with probabilities
given by Born’s rule, drives A into its up or down ferromagnetic phase. The overall final state
involves the expected correlations between the result registered in M and the state of S. The
measurement is thus accounted for by standard quantum-statistical mechanics and its specific
features arise from the macroscopic size of the apparatus.

The quantum measurement problem has given rise to an immense literature [1], but it
is still an object of debate. Insight can be gained by studying exactly solvable dynamical
models [2]. The one we consider hereafter is intended to be as realistic as possible.

We first have to face the irreducibly probabilistic nature of quantum mechanics, arising
from the non-commutation of observables. Within the statistical interpretation, see e.g. [3],
a wave function can provide us with nothing more than the probabilities for the values of
any physical quantity. We adhere to the so-called Bayesian view on probabilities [4]: they
are not inherent to a single object but refer to a population to which it belongs (in reality
or in thought); they are mathematical tools for deducing sensible predictions from given
prior knowledge. Thus, what is called a quantum “state”, whether pure or mixed, gathers
our information on the considered system: it does not characterize this system by itself,
but its statistical ensemble. Accordingly, the consistency of quantum mechanics requires
a measurement to be analyzed as a statistical process involving many similar experiments
with all possible outcomes. This process couples a system (S) to an apparatus (A), creating
correlations between the initial state (in the above sense) of S and the final value Ai of a
c© EDP Sciences
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pointer variable Â of A. One infers thereby information about S as regards the occurrence
of the corresponding eigenvalue si of one of its observables ŝ. This knowledge has statistical
nature because quantum theory cannot inform us fully about a single object, even if it is
“completely” prepared in a pure state.

Quantum statistical mechanics is also unavoidable for other reasons. On the one hand,
the apparatus should be macroscopic so as to ensure registration of the outcomes Ai. The
recorded results may later on be read by an observer whom we thus can leave aside. The
required large size of A forbids us to assign a pure state to it since it cannot be completely
prepared at the microscopic level. Rather, as always in statistical problems, we must assign a
density matrix to it. On the other hand, a quantum measurement is an irreversible process.
Statistical mechanics is necessary to explain this specific type of irreversibility, as any other
one, by relying on microscopic Hamiltonian dynamics.

Even if the coupling of S and A is weak, the perturbation it induces on S cannot in general
be neglected in a quantum measurement. We will consider a so-called ideal measurement,
which perturbs S as little as possible, keeping unchanged the statistics of all observables
which commute with ŝ. The final density matrix of S, r(tf), is then obtained from r(0) by
cancelling the off-diagonal blocks associated with different eigenvalues si and sj of ŝ. We
denote the remaining diagonal blocks as ri.

To represent a measurement, a process should have several specific features [1,5,6]. i) The
apparatus A is macroscopic and at the initial time t = 0 in a metastable state R(0), indepen-
dent of the arbitrary state r(0) of the system S. The full density operator has the form

D(0) = r(0)⊗R(0). (1)

ii) Triggered by its coupling with S, A may reach at the end of the process one among several
possible states Ri, which are a priori equally probable so as to avoid any bias. iii) Each state
Ri is stable so as to register information robustly and permanently. In the state Ri the pointer
variable Â has negligible fluctuations around Ai so as to ensure precise and clear distinction
between the possible outcomes. iv) The observable ŝ of S does not change much during the
process, and thus nearly commutes with the Hamiltonian. v) An ideal measurement involves
a collapse, which changes r(0) into the sum of its diagonal blocks ri corresponding to each
si. vi) The density operator at the end of the process involves a special type of classical
correlations between S and A, namely,

D(0) �−→ D(tf) =
∑

i

ri ⊗Ri ≡
∑

i

pi × ri

tr ri
⊗Ri. (2)

Together with iii) and with probabilistic interpretation of a quantum state, eq. (2) means that
the pointer variable may take any of the values Ai corresponding to si with the probabilities
pi = tr ri (Born’s law), and that if we select Ai, the subsequent statistics of S is described by
the density operator ri/tr ri (von Neumann’s reduction).

Most of these features have been emphasized in the past, and the models already worked
out exhibit some among them [1–3, 5, 6]. In the present model all the above requirements
will be fulfilled. In order to satisfy conditions ii) and iii) we take for A a macroscopic system
displaying a phase transition with broken symmetry so as to eliminate any bias; Â is an order
parameter with small fluctuations. Moreover, A involves a large number of degrees of freedom
which ensure an irreversible relaxation towards one of the equilibrium states Ri.

The model. – Our system S is a spin- 12 , the observable to be measured is its third Pauli
matrix ŝz with eigenvalues si equal to ±1. Our apparatus A = M + B simulates a magnetic
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dot: M consists of N 
 1 spins with Pauli operators σ̂(n)a (a = x, y, z) coupled to the phonon
bath B. The order parameter Â is the magnetization in the z-direction m̂ = 1

N

∑N
n=1 σ̂

(n)
z .

The Hamiltonian Ĥ = ĤA + ĤSA governing the measurement process reads

ĤA = ĤM + ĤMB + ĤB, ĤSA = −gNm̂ŝz,

ĤM = −1
q
JNm̂q, ĤMB =

√
γ

N∑
n=1

∑
a=x,y,z

σ̂(n)a B̂(n)
a . (3)

It commutes with ŝz in agreement with [7], ensuring the condition iv) above. The interaction
ĤSA is a spin-spin coupling with strength g > 0. The Hamiltonian ĤM, of the Curie-Weiss
type, couples all spins symmetrically. For q = 2 one has an Ising model, while q = 4 or 6
describes so-called super-exchange interactions as realized for metamagnets. We take q = 4.
The bath B describes a set of Debye phonons at equilibrium in the thermodynamic limit. The
dimensionless constant γ characterizes the strength of their coupling to the spins of M. It
should be weak to trace out B and to ensure an exact Boltzmann-Gibbs distribution of M at
equilibrium. The properties of the bath operators B̂(n)

a will be specified later.

Mean-field approximation for the apparatus. – The long-range character of ĤM ensures
that its equilibrium behavior is exactly described in the large-N limit by the mean-field ap-
proximation. However, the correlations between S and A induced by ĤSA are essential for our
purposes. Their very existence prevents us from applying the standard mean-field method. A
way out of this is to separate the state D of the total system S +M+ B into several sectors,
and use a different time-dependent mean field in each of them. In the eigenbasis of ŝz for S,
|i〉 = |↑〉 or |↓〉 for eigenvalues si = ±1, D has the elements Dij = 〈i|D|j〉. The von Neumann
equation reads, for each of the operators Dij in the M + B space,

ih̄
d
dt

Dij = −gN(sim̂Dij − sjDijm̂) +
[
ĤA,Dij

]
. (4)

The mean-field approach is implemented for each Dij . In ĤA we replace m̂4 bym4
ij+4m3

ij(m̂−
mij), where the c-number mij is determined self-consistently. To do this we note that (unlike
D↑↑ and D↓↓) D↑↓ and D↓↑ = D†

↑↓ are neither positive nor Hermitian. Taking

mij =
tr m̂|Dij |
tr |Dij | , |Dij | ≡

√
DijD†

ij (5)

for any pair ij, one can show that this approximation becomes exact for large N , as in the
static case.

Properties of the bath. – The interaction between the bath B and the magnet M is
treated within the cumulant weak-coupling approach, see e.g. [8]. The initial state of B is
Gibbsian at temperature T = 1/β, RB(0) = exp[−βĤB]/ZB, and is not correlated with the
density operator D(0) = r(0) ⊗ RM(0) of S + M. The Hamiltonian ĤB is such that the
free correlation functions of the bath variables are stationary, identical and independent for
different components a and different sites n,

trB
[
RB(0)B̂(n)

a (t)B̂(m)
b (s)

]
= δa,bδn,mK(t− s). (6)

In agreement with the initial equilibrium of B, we assume a quasi-ohmic spectrum

K(t) = h̄2
∫ ∞

−∞

dω
16π

eiωtω

(
coth

1
2
βh̄ω − 1

)
e−|ω|/Γ, (7)
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with Γ the Debye frequency cut-off, where h̄Γ exceeds all other energy scales: T , J and g.
The correlation time of B, of order h̄/T , is much smaller than the characteristic times of A
variables, which for long times ensures relaxation of A towards the Gibbs distribution. Besides
the weak-coupling limit γ � 1, this requires not too low a temperature (T 
 γJ).

Bloch equations. – As indicated above, in the large-N limit each block of D, and hence
of D = trBD, is of the time-dependent mean-field type:

Dij(t) = rij(0)× ρ
(1)
ij (t)⊗ · · · ⊗ ρ

(N)
ij (t). (8)

Each ρ
(n)
ij lives in the 2× 2 Hilbert space of the n-th spin of M, and reads in the polarization

representation: ρ(n)ij = 1
2

∑
a=0,x,y,z ζa,ij σ̂

(n)
a , where the σ̂(n)0 are 2 × 2 identity matrices and

where ζa,ij = tr σ̂(n)a ρ
(n)
ij is independent of n.

As the coupling is weak, we can eliminate the bath from (4), even for times shorter than
the memory time of K(t); eq. (8) yields ζx,ij = ζy,ij = 0 at all t and

ζ̇0,↑↓ =
2ig
h̄
ζz,↑↓, ζ̇z,↑↓ =

2ig[1 + η(t)]
h̄

ζ0,↑↓ − 2Λ(t)ζz,↑↓, (9)

where for t � 1/Γ, Λ equals γΓ2t/2π and η = γΓ2t2/2π. They go in the Markovian limit
t 
 h̄/T to Λ(∞) = γg/(2h̄ tanhβg) and η(∞) = 0.

For ζ0,↑↑ and for the magnetization m↑ = ζz,↑↑/ζ0,↑↑ we shall need below only the Marko-
vian equation:

ζ̇0,↑↑ = 0, ṁ↑ =
γh↑
h̄

(
1− m↑

tanhβh↑

)
, (10)

where h↑(t) = g + Jm3
↑(t) is the effective field in the considered sector. The sign of g is

changed for the ↓↓ sector.

Initial conditions. – Before the measurement, M is prepared in a paramagnetic state
RM(0)= 2−N

∏
n σ̂

(n)
0 , leading to the initial density matrix of A=M+B:R(0)=RM(0)⊗RB(0).

The measurement will be unbiased, since the order parameter vanishes initially, mij(0) = 0.
According to eqs. (1), (8), we have ζ0,ij(0) = 1, ζa,ij(0) = 0. The paramagnetic state is
metastable for temperatures below 0.36J and this is the regime where A can act as a measur-
ing apparatus. Its decay time is then exponentially large inN , thus basically infinite. However,
a change in the macroscopic state of A can be induced by its coupling with S, provided g is
sufficiently large so as to suppress the barrier leading to the lowest ferromagnetic state.

Collapse. – We first consider the evolution of the off-diagonal elements r↑↓, given by (8) as

r↑↓(t) = trM,BD↑↓(t) = trMD↑↓(t) = r↑↓(0)ζN
0,↑↓(t). (11)

Obtained by solving (9) with its initial conditions by the exact WKB method, ζ0,↑↓(t) has the
form exp[−χ(t)] cos θ(t), where θ(t) = 2g

h̄

∫ t

0
ds exp 2[χ(s)− ∫ s

0
duΛ(u)]. For t < 1/Γ, χ and θ

behave as

χ ≈ γΓ2g2

2πh̄2
t4, θ ≈ 2gt

h̄

(
1− γΓ2t2

6π

)
. (12)

(The Markovian regime t 
 h̄/T , χ = Λ(∞)t is irrelevant here when N is very large.) The
amplitude of ζ0,↑↓ decreases as an exponential, quartic in t for small times and linear for
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long times. Since ζz,↑↓ is imaginary, D↑↓D†
↑↓ is proportional to the unit matrix, so that m↑↓

vanishes.
We thus find for r↑↓(t) = r↑↓(0)e−Nχ(t)[cos θ(t)]N a sequence of narrow Gaussian peaks,

arising from the nearly periodic cosine factor and located around the times at which θ/π is an
integer. At the very beginning of the measurement, (12) show that the off-diagonal elements
r↑↓(t) = r∗↓↑(t) of the marginal density matrix of S rapidly fall down. For a large apparatus such
that N 
 γ(h̄Γ/g)2, this decrease is dominated by that of [cos(2gt/h̄)]N = exp[−(t/τcollapse)2]
rather than that of exp[−Nχ]. The collapse time

τcollapse =
1√
2N

h̄

g
(13)

thus characterizes the disappearance of the components D↑↓ and D↓↑ for S +M. This time is
much shorter than all other characteristic times of the process. Its coefficient h̄/g differs from
the one h̄/T that enters standard decoherence times.

The subsequent spikes, the first of which occurs at t = πh̄/(2g), are suppressed by the
factor exp[−Nχ(t)] which arises due to the interaction with the bath, a decay amplified by
the large value of N . Due to (12) this means that after a decoherence time

τdecoh =
(

2π
γN

)1/4(
h̄

Γg

)1/2

(14)

all the peaks are washed out, and r↑↓ and r↓↑ remain zero after their initial Gaussian collapse,
while r↑↑ and r↓↓ are kept unchanged since ŝz is conserved. The collapse proper thus results
only from the interaction ĤSA of S with the large number of spins, as shown by (13). The
irreversible loss of information about the off-diagonal elements takes place at a characteristic
time τdecoh, after the collapse. Provided N 
 (h̄Γ/g)2/γ, it is faster than 1/Γ, the attempt
time of the bath, and well before the recurrence of the first peak, since we already assumed
that h̄Γ 
 g. This irreversibility is essential although hidden, since r↑↓ has not yet revived
when it takes place.

In fact, not only the initial collapse, but even the suppression of possible revivals do not
require M to interact with a bath. A realistic interaction ĤSA would involve a small dispersion
δg around the average value 〈g〉 of the coupling between ŝz and the various spins σ̂(n)z of A. For
independent disorder a cumulant expansion now brings θ = 〈g〉2t/h̄ − 〈δg3〉c(2t/h̄)3/3! + · · ·
and χ = 〈δg2〉c(2t/h̄)2/2 − 〈δg4〉c(2t/h̄)4/4! + · · · . The damping factor exp[−Nχ(t)] then
suppresses the recurrent peaks provided N 
 〈g〉2/〈δg2〉c. The large size of the apparatus
thus suffices to make the initial collapse permanent. The irreversibility of the collapse is
here as a collective effect due to the large value of N and not to the environment. These
two mechanisms for suppression of the x, y components of the spin S are reminiscent of the
spin-lattice and spin-spin relaxation mechanisms in NMR, respectively.

Registration. – Let us now consider the evolution of the diagonal elements D↑↑ and D↓↓.
Since they are not affected by the initial process, their evolution is governed by (10) in the
Markovian regime t 
 h̄/T . The registration by the apparatus will therefore look like a relax-
ation towards equilibrium in statistical mechanics. The Curie-Weiss equation, mi = tanh[βhi]
with hi = ±g + Jm3

i for each sector i = ↑ of ↓, gives the extrema of the free energy per site
Fi(m) = ∓gm− 1

4Jm
4−TS(m), where S(m) = − 1+m

2 ln 1+m
2 − 1−m

2 ln 1−m
2 is entropy in the

mean-field approximation. The minima of Fi(m) are attractors for the evolution (10). Since
m↑ begins to increase as γgt/h̄, it relaxes to the smallest positive value of m where F↑(m) is
minimal. If the temperature is not sufficiently low, or if g is too small, this is the paramagnetic
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state, m↑ → tanhβg and m↓ → − tanhβg. The result of the measurement cannot then be
registrated robustly, since, after the coupling with S is removed, M returns to m↑ = m↓ = 0.
However, for sufficiently large g (g > 0.08J for T = 0.34J), the paramagnetic state is totally
lost and the relaxation of M leads to a ferromagnetic state with magnetization nearly equal to 1
for m↑, to −1 for m↓ (±0.996 for T = 0.34J , g = 0.09J). When the coupling is switched off af-
ter relaxation, M remains in the vicinity of that state: the system A = M+B is non-ergodic and
the memory of its triggering by S is kept forever. The duration of the measurement, namely

τmeas =
h̄

γg
, (15)

is governed by the establishment of strong correlations of M and S, which takes place when
the magnetization of M reaches significant values having the same sign as sz. This stage of
the process is the slowest of all. The dimensionless factor 1/γ expresses that relaxation occurs
due to coupling with the bath B. The final stage, after m↑ has become sizeable, is a more
rapid exponential relaxation with characteristic time h̄/γJ , during which the coupling with S
is ineffective, and which leads to robust registration in a ferromagnetic state.

Altogether, the common final state of A and S after τmeas has the form (2) with probabilities
p↑ = r↑↑(0), p↓ = r↓↓(0) for i = ↑ or ↓; the states |↑〉〈↑| or |↓〉〈↓| of S are correlated with the
ferromagnetic states of A, R↑ or R↓, having positive or negative magnetization, respectively.

Conclusion. – In spite of the simplicity of the present model, its exact solution displays all
the features, listed in the introduction, that a quantum measurement should satisfy. We relied
on the statistical interpretation of quantum mechanics, which naturally leads to describing
an ensemble of measurements on an ensemble of systems and which should yield all possible
outcomes with Born probabilities. The process follows an elaborate scenario involving several
time-scales. At the very beginning, over the very short time (13), the state of S collapses,
while A is affected only microscopically. This collapse is governed by the large value of N
and should be contrasted with the standard decoherence processes [1,2]. Somewhat later, it is
made irreversible, either by means of the interaction with the thermal bath (at the decoherence
time (14)), or under the effect of a small randomness in the coupling of S with M. This stage is
invisible, since it corresponds only to a disappearance of complicated many-spin correlations
within M; its duration is longer than τcollapse but shorter than the recurrence time πh̄/(2g)
which would exist without any dissipation. Thereafter the statistics of S becomes classical for
the two values sz = ±1 and remains unchanged in time. The system S, although microscopic,
is seen by M as an external magnetic field ±g which is sufficient to trigger the subsequent
evolution of M from its initial metastable state towards either one of its ferromagnetic states.
Because M is macroscopic, this evolution is slow; its time-scale τmeas is governed by the bath
B (the parameters of which satisfy h̄Γ 
 T 
 γJ and h̄Γ 
 J > g). Finally, the registration
becomes permanent owing to the irreversible relaxation of M into stable equilibrium. This
takes place over a time of order h̄/(γJ) shorter than the time h̄/(γg) required to leave the
metastable state. We have focused on parameters for which the model simulates an ideal
measurement, but the analysis may be extended to cover realistic imperfect measurements,
for instance if N is not very large or if the observed quantity ŝz is not conserved.

An essential property allowing the process to be used as an ideal measurement is themacro-
scopic size of the apparatus. It is the large value of N and the quasi-continuity of the phonon
spectrum which ensure the collapse, the breaking of invariance of M which generates its initial
metastable state and its final two possible stable states, and the dynamics of A which leads to
registration. The macroscopic nature of A thus conditions the form (2) of the outcoming state,
with its correlations of classical nature between the sign of the magnetization of M and the
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final marginal state |↑〉〈↑| or |↓〉〈↓| of S, and with the occurrence of the Born probabilities p↑
or p↓ for each of these events. This statistical description of the final state expresses that each
particular experiment yields a well-defined outcome for M, and that the selection of a given
result for M can serve as a preparation of S immediately after the process in one of its pure
states |↑〉 or |↓〉. The emergence of classical probabilities from quantum mechanics is thus a
macroscopic phenomenon, explained by means of quantum statistical mechanics and occurring
on definite time-scales. It is comparable with macroscopic irreversibility, which emerges from
Hamiltonian dynamics for many degrees of freedom in the framework of statistical mechanics.
Actually, here also, several mechanisms come into play, which explain the irreversibility of
the measurement process; but, moreover, they transform the microscopic non-commutative
probabilistic description of quantum mechanics into ordinary probabilities for the final state.

∗ ∗ ∗

AEA and RB acknowledge hospitality of the University of Amsterdam and ThMN of the
CEA Saclay.
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