1,060 research outputs found

    Advances in Spatial Data Infrastructure, Acquisition, Analysis, Archiving and Dissemination

    Get PDF
    The authors review recent contributions to the state-of-thescience and benign proliferation of satellite remote sensing, spatial data infrastructure, near-real-time data acquisition, analysis on high performance computing platforms, sapient archiving, multi-modal dissemination and utilization for a wide array of scientific applications. The authors also address advances in Geoinformatics and its growing ubiquity, as evidenced by its inclusion as a focus area within the American Geophysical Union (AGU), European Geosciences Union (EGU), as well as by the evolution of the IEEE Geoscience and Remote Sensing Society's (GRSS) Data Archiving and Distribution Technical Committee (DAD TC)

    Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of O-18-Phosphoramidites**

    Get PDF
    A family of 18O2-phosphoramidites facilitates synthetic access on gram-scale to various isotopically pure 18O-labelled phosphate products, like nucleotides, inositol phosphates, polyphosphates, and DNA. The utility of these 18O-natural products is underlined in the assignment of various metabolites from biological matrices using capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry. Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2-phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry

    Neutrino-less Double Beta Decay and Particle Physics

    Full text link
    We review the particle physics aspects of neutrino-less double beta decay. This process can be mediated by light massive Majorana neutrinos (standard interpretation) or by something else (non-standard interpretations). The physics potential of both interpretations is summarized and the consequences of future measurements or improved limits on the half-life of neutrino-less double beta decay are discussed. We try to cover all proposed alternative realizations of the decay, including light sterile neutrinos, supersymmetric or left-right symmetric theories, Majorons, and other exotic possibilities. Ways to distinguish the mechanisms from one another are discussed. Experimental and nuclear physics aspects are also briefly touched, alternative processes to double beta decay are discussed, and an extensive list of references is provided.Comment: 96 pages, 38 figures. Published versio

    On the Quantitative Impact of the Schechter-Valle Theorem

    Full text link
    We evaluate the Schechter-Valle (Black Box) theorem quantitatively by considering the most general Lorentz invariant Lagrangian consisting of point-like operators for neutrinoless double beta decay. It is well known that the Black Box operators induce Majorana neutrino masses at four-loop level. This warrants the statement that an observation of neutrinoless double beta decay guarantees the Majorana nature of neutrinos. We calculate these radiatively generated masses and find that they are many orders of magnitude smaller than the observed neutrino masses and splittings. Thus, some lepton number violating New Physics (which may at tree-level not be related to neutrino masses) may induce Black Box operators which can explain an observed rate of neutrinoless double beta decay. Although these operators guarantee finite Majorana neutrino masses, the smallness of the Black Box contributions implies that other neutrino mass terms (Dirac or Majorana) must exist. If neutrino masses have a significant Majorana contribution then this will become the dominant part of the Black Box operator. However, neutrinos might also be predominantly Dirac particles, while other lepton number violating New Physics dominates neutrinoless double beta decay. Translating an observed rate of neutrinoless double beta decay into neutrino masses would then be completely misleading. Although the principal statement of the Schechter-Valle theorem remains valid, we conclude that the Black Box diagram itself generates radiatively only mass terms which are many orders of magnitude too small to explain neutrino masses. Therefore, other operators must give the leading contributions to neutrino masses, which could be of Dirac or Majorana nature.Comment: 18 pages, 4 figures; v2: minor corrections, reference added, matches journal version; v3: typo corrected, physics result and conclusions unchange

    A Dysregulated Endocannabinoid-Eicosanoid Network Supports Pathogenesis in a Mouse Model of Alzheimer's Disease

    Get PDF
    SummaryAlthough inflammation in the brain is meant as a defense mechanism against neurotoxic stimuli, increasing evidence suggests that uncontrolled, chronic, and persistent inflammation contributes to neurodegeneration. Most neurodegenerative diseases have now been associated with chronic inflammation, including Alzheimer's disease (AD). Whether anti-inflammatory approaches can be used to treat AD, however, is a major unanswered question. We recently demonstrated that monoacylglycerol lipase (MAGL) hydrolyzes endocannabinoids to generate the primary arachidonic acid pool for neuroinflammatory prostaglandins. In this study, we show that genetic inactivation of MAGL attenuates neuroinflammation and lowers amyloid β levels and plaques in an AD mouse model. We also find that pharmacological blockade of MAGL recapitulates the cytokine-lowering effects through reduced prostaglandin production, rather than enhanced endocannabinoid signaling. Our findings thus reveal a role of MAGL in modulating neuroinflammation and amyloidosis in AD etiology and put forth MAGL inhibitors as a potential next-generation strategy for combating AD

    General Relativistic Mean Field Theory for Rotating Nuclei

    Full text link
    We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic σ−ω\sigma - \omega model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.Comment: 13 pages, REVTeX, no figures, submitted to Phys. Rev. Lett., the word `curved' is replaced by `non-inertial' or `accelerated' in several places to clarify the physical situation interested, some references are added, more detail discussions are given with omitting some redundant sentence

    Star formation towards the Scutum tangent region and the effects of Galactic environment

    Full text link
    By positional matching to the catalogue of Galactic Ring Survey molecular clouds, we have derived distances to 793 Bolocam Galactic Plane Survey (BGPS) sources out of a possible 806 located within the region defined by Galactic longitudes l = 28.5 degr to 31.5 degr and latitudes |b| < 1 degr. This section of the Galactic Plane contains several major features of Galactic structure at different distances, mainly mid-arm sections of the Perseus and Sagittarius spiral arms and the tangent of the Scutum-Centarus arm, which is coincident with the end of the Galactic Long Bar. By utilising the catalogued cloud distances plus new kinematic distance determinations, we are able to separate the dense BGPS clumps into these three main line-of-sight components to look for variations in star-formation properties that might be related to the different Galactic environments. We find no evidence of any difference in either the clump mass function or the average clump formation efficiency (CFE) between these components that might be attributed to environmental effects on scales comparable to Galactic-structure features. Despite having a very high star-formation rate, and containing at least one cloud with a very high CFE, the star formation associated with the Scutum-Centarus tangent does not appear to be in any way abnormal or different to that in the other two spiral-arm sections. Large variations in the CFE are found on the scale of individual clouds, however, which may be due to local triggering agents as opposed to the large-scale Galactic structure.Comment: 11 pages, 8 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ
    • …
    corecore