1,105 research outputs found

    Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae

    Get PDF
    Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74–100% of all beetles) followed closely by Ophiostoma abietinum (29–75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0–13%), Ophiostoma ips (0–15%), Ophiostoma piliferum (0–11%), a Pesotum sp. (0–11%) and Ophiostoma floccosum (0–1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.National Science Foundation grant OISE-0434171 awarded to DLS, Natural Resources Canada, Canadian Forest Service Mountain Pine Beetle Initiative Grant to ALC, members of the Tree Co-operative Programme, the THRIP initiative of the Department of Trade and Industry, South Africa

    Secondary cities as catalysts for nutritious diets in low- and middle-income countries

    Get PDF
    The world is facing a malnutrition crisis in the midst of rising rates of urbanization; more than half of the world's population lives in urban areas, a number that is expected to reach two-thirds by 2050, consuming 80% of the world's food. Instead of the development of existing cities into 'mega-cities, ' urbanization is creating a patchwork of smaller urban areas. In 2018, close to half of the world's urban residents lived in settlements or towns with less than 500, 000 inhabitants. These settlements are classified as secondary cities and are, in terms of population, the fastest growing urban areas. Poor diets among city inhabitants are the consequence of a combination of forces. These include changes in types of occupation, particularly for women; food-environment factors; shifts in norms and attitudes regarding food; globalization of food supply chains; lack of infrastructure; post-harvest food loss and waste, etc. Secondary cities offer entry points for food system transformation. Secondary cities are characterized by strong urban-rural linkages and the opportunity for localized food production and consumption. These cities could also play a key role in enhancing resilience to food security shocks. This chapter discusses the challenge of the growing triple burden of malnutrition in urban contexts and argues for the important role of secondary cities in transforming urban food systems. Through three case studies of secondary cities in LMICs, these cities are shown as emerging players in nutrition-centered food system interventions. © The Author(s) 2023

    Light absorption by marine cyanobacteria affects tropical climate mean state and variability

    Get PDF
    Observations indicate that positively buoyant marine cyanobacteria, which are abundant throughout the tropical and subtropical ocean, have a strong local heating effect due to light absorption at the ocean surface. How these local changes in radiative heating affect the climate system on the large scale is unclear. We use the Max Planck Institute Earth System Model (MPI-ESM), include light absorption by cyanobacteria, and find a considerable cooling effect on tropical sea surface temperature (SST) in the order of 0.5&thinsp;K on a climatological timescale. This cooling is caused by local shading of subtropical subsurface water by cyanobacteria that is upwelled at the Equator and in eastern boundary upwelling systems. Implications for the climate system include a westward shift of the Walker circulation and a weakening of the Hadley circulation. The amplitude of the seasonal cycle of SST is increased in large parts of the tropical ocean by up to 25&thinsp;%, and the tropical Pacific interannual variability is enhanced by approx. 20&thinsp;%. This study emphasizes the sensitivity of the tropical climate system to light absorption by cyanobacteria due to its regulative effect on tropical SST. Generally, including phytoplankton-dependent light attenuation instead of a globally uniform attenuation depth improves some of the major model temperature biases, indicating the relevance of taking this biophysical feedback into account in climate models.</p

    Beyond Prejudice as Simple Antipathy: Hostile and Benevolent Sexism Across Cultures

    Get PDF
    The authors argue that complementary hostile and benevolent componen:s of sexism exist ac ro.ss cultures. Male dominance creates hostile sexism (HS). but men's dependence on women fosters benevolent sexism (BS)-subjectively positive attitudes that put women on a pedestal but reinforce their subordination. Research with 15,000 men and women in 19 nations showed that (a) HS and BS are coherenl constructs th at correlate positively across nations, but (b) HS predicts the ascription of negative and BS the ascription of positive traits to women, (c) relative to men, women are more likely to reject HS than BS. especially when overall levels of sexism in a culture are high, and (d) national averages on BS and HS predict gender inequal ity across nations. These results challenge prevailing notions of prejudice as an antipathy in that BS (an affectionate, patronizing ideology) reflects inequality and is a cross-culturally pervasive complement to HS

    Bell inequalities for entangled kaons and their unitary time evolution

    Full text link
    We investigate Bell inequalities for neutral kaon systems from Phi resonance decay to test local realism versus quantum mechanics. We emphasize the unitary time evolution of the states, that means we also include all decay product states, in contrast to other authors. Only this guarantees the use of the complete Hilbert space. We develop a general formalism for Bell inequalities including both arbitrary "quasi spin" states and different times; finally we analyze Wigner-type inequalities. They contain an additional term, a correction function h, as compared to the spin 1/2 or photon case, which changes considerably the possibility of quantum mechanics to violate the Bell inequality. Examples for special "quasi spin" states are given, especially those which are sensitive to the CP parameters epsilon and epsilon'.Comment: REVTeX, 22 page

    Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter AedVA^V_{ed} was measured for the 2H⃗(e⃗,e′p)n^2 \vec{\rm H}(\vec e,e^\prime p)n reaction for missing momenta up to 350 MeV/cc at a four-momentum transfer squared of 0.21 (GeV/c)2^2. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio

    Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

    Get PDF
    The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere midlatitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPIESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPIESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8K for the ensemble mean and from 3.3K to 4.3K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric carbon content in response to the land's gain. In summary, we find that the volcanic eruption has long-lasting effects on the carbon cycle: After 200 years, the ocean and the land carbon pools are still different from the pre-eruption state by 3 GtC and 4 GtC, respectively, and the land carbon pools (vegetation and soil) show some long-lasting local anomalies that are only partly visible in the global signal. © Author(s) 2013. CC Attribution 3.0 License

    The Charge Form Factor of the Neutron at Low Momentum Transfer from the 2H⃗(e⃗,e′n)p^{2}\vec{\rm H}(\vec{\rm e},{\rm e}'{\rm n}){\rm p} Reaction

    Full text link
    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMnG^{n}_{E}/G^{n}_{M} was extracted from the beam-target vector asymmetry AedVA_{ed}^{V} at four-momentum transfers Q2=0.14Q^{2}=0.14, 0.20, 0.29 and 0.42 (GeV/c)2^{2}.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
    • …
    corecore