458 research outputs found

    GFP fusions of Sec-routed extracellular proteins in Staphylococcus aureus reveal surface-associated coagulase in biofilms

    Get PDF
    Staphylococcus aureus is a major human pathogen that utilises many surface-associated and secreted proteins to form biofilms and cause disease. However, our understanding of these processes is limited by challenges of using fluores-cent protein reporters in their native environment, because they must be ex-ported and fold correctly to become fluorescent. Here, we demonstrate the feasibility of using the monomeric superfolder GFP (msfGFP) exported from S. aureus. By fusing msfGFP to signal peptides for the Secretory (Sec) and Twin Arginine Translocation (Tat) pathways, the two major secretion pathways in S. aureus, we quantified msfGFP fluorescence in bacterial cultures and cell-free supernatant from the cultures. When fused to a Tat signal peptide, we detect-ed msfGFP fluorescence inside but not outside bacterial cells, indicating a fail-ure to export msfGFP. However, when fused to a Sec signal peptide, msfGFP fluorescence was present outside cells, indicating successful export of the msfGFP in the unfolded state, followed by extracellular folding and maturation to the photoactive state. We applied this strategy to study coagulase (Coa), a secreted protein and a major contributor to the formation of a fibrin network in S. aureus biofilms that protects bacteria from the host immune system and increases attachment to host surfaces. We confirmed that a genomically inte-grated C-terminal fusion of Coa to msfGFP does not impair the activity of Coa or its localisation within the biofilm matrix. Our findings demonstrate that msfGFP is a good candidate fluorescent reporter to consider when studying proteins secreted by the Sec pathway in S. aureus

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter

    Business unusual: collective action against bribery in international business

    Get PDF
    Collective action initiatives in which governments and companies make anti-corruption commitments have proliferated in recent years. This apparently prosocial behavior defies the logic of collective action and, given that bribery often goes undetected and unpunished, is not easily explained by principal-agent theory. Club theory suggests that the answer lies in the institutional design of anti-corruption clubs: collective action can work as long as membership has high entry costs, members receive selective benefits, and compliance is adequately policed. This article contributes to the debate by examining how these conditions manifest in the case of anti-corruption clubs in the realm of international business, with particular focus on the international dimension of many initiatives. This vertical aspect of institutional design creates a richer, more complex set of reputational and material benefits for members, as well as allowing for more credible and consistent monitoring and enforcement

    A rapid and sensitive system for recovery of nucleic acids from Mycobacteria sp. on archived glass slides

    Get PDF
    The field of diagnostics continues to advance rapidly with a variety of novel approaches, mainly dependent upon high technology platforms. Nonetheless much diagnosis, particularly in developing countries, still relies upon traditional methods such as microscopy. Biological material, particularly nucleic acids, on archived glass slides is a potential source of useful information both for diagnostic and epidemiological purposes. There are significant challenges faced when examining archived samples in order that an adequate amount of amplifiable DNA can be obtained. Herein, we describe a model system to detect low numbers of bacterial cells isolated from glass slides using (laser capture microscopy) LCM coupled with PCR amplification of a suitable target. Mycobacterium smegmatis was used as a model organism to provide a proof of principle for a method to recover bacteria from a stained sample on a glass slide using a laser capture system. Ziehl-Neelsen (ZN) stained cells were excised and catapulted into tubes. Recovered cells were subjected to DNA extraction and pre-amplified with multiple displacement amplification (MDA). This system allowed a minimum of 30 catapulted cells to be detected following a nested real-time PCR assay, using rpoB specific primers. The combination of MDA and nested real-time PCR resulted in a 30-fold increase in sensitivity for the detection of low numbers of cells isolated using LCM. This study highlights the potential of LCM coupled with MDA as a tool to improve the recovery of amplifiable nucleic acids from archived glass slides. The inclusion of the MDA step was essential to enable downstream amplification. This platform should be broadly applicable to a variety of diagnostic applications and we have used it as a proof of principle with a Mycobacterium sp. model system

    Norms, Networks, Power, and Control: Understanding Informal Payments and Brokerage in Cross-Border Trade in Sierra Leone

    Get PDF
    Recent research has cast light on the variety of informal payments and practices that govern the day-to-day interactions between traders and customs agents at border posts in low-income countries. Building on this literature, this paper draws on survey and qualitative evidence in an effort to explore which groups are most advantaged and disadvantaged by the largely informal processes and norms governing cross-border trade. We find that understanding variation in strategies and outcomes across traders can only be effectively understood with reference to the importance of norms, networks, power, and the logic of control.Department for International DevelopmentBill and Melinda Gates Foundatio

    Mitochondrial Pseudogenes in the Nuclear Genomes of Drosophila

    Get PDF
    Mitochondrial pseudogenes in nuclear chromosomes (numts) have been detected in the genomes of a diverse range of eukaryotic species. However, the numt content of different genomes and their properties is not uniform, and study of these differences provides insight into the mechanisms and dynamics of genome evolution in different organisms. In the genus Drosophila, numts have previously only been identified on a genome-wide scale in the melanogaster subgroup. The present study extends the identification to 11 species of the Drosophila genus. We identify a total of 302 numts and show that the numt complement is highly variable in Drosophilids, ranging from just 4 in D. melanogaster to 67 in D. willistoni, broadly correlating with genome size. Many numts have undergone large-scale rearrangements in the nucleus, including interruptions, inversions, deletions and duplications of sequence of variable size. Estimating the age of the numts in the nucleus by phylogenetic tree reconstruction reveals the vast majority of numts to be recent gains, 90% having arisen on terminal branches of the species tree. By identifying paralogs and counting duplications among the extant numts we estimate that 23% of extant numts arose through post-insertion duplications. We estimate genus average rates of insertion of 0.75 per million years, and a duplication rate of 0.010 duplications per numt per million years

    The FlbA-regulated predicted transcription factor Fum21 of <i>Aspergillus niger</i> is involved in fumonisin production

    Get PDF
    Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production

    Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    Get PDF
    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation

    Network Geometry and Complexity

    Get PDF
    (28 pages, 11 figures)Higher order networks are able to characterize data as different as functional brain networks, protein interaction networks and social networks beyond the framework of pairwise interactions. Most notably higher order networks include simplicial complexes formed not only by nodes and links but also by triangles, tetrahedra, etc. More in general, higher-order networks can be cell-complexes formed by gluing convex polytopes along their faces. Interestingly, higher order networks have a natural geometric interpretation and therefore constitute a natural way to explore the discrete network geometry of complex networks. Here we investigate the rich interplay between emergent network geometry of higher order networks and their complexity in the framework of a non-equilibrium model called Network Geometry with Flavor. This model, originally proposed for capturing the evolution of simplicial complexes, is here extended to cell-complexes formed by subsequently gluing different copies of an arbitrary regular polytope. We reveal the interplay between complexity and geometry of the higher order networks generated by the model by studying the emergent community structure and the degree distribution as a function of the regular polytope forming its building blocks. Additionally, we discuss the underlying hyperbolic nature of the emergent geometry and we relate the spectral dimension of the higher-order network to the dimension and nature of its building blocks
    • …
    corecore