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Abstract Higher order networks are able to characterize data as different as
functional brain networks, protein interaction networks and social networks
beyond the framework of pairwise interactions. Most notably higher order
networks include simplicial complexes formed not only by nodes and links
but also by triangles, tetrahedra, etc. More in general, higher-order networks
can be cell-complexes formed by gluing convex polytopes along their faces.
Interestingly, higher order networks have a natural geometric interpretation
and therefore constitute a natural way to explore the discrete network ge-
ometry of complex networks. Here we investigate the rich interplay between
emergent network geometry of higher order networks and their complexity
in the framework of a non-equilibrium model called Network Geometry with
Flavor. This model, originally proposed for capturing the evolution of sim-
plicial complexes, is here extended to cell-complexes formed by subsequently
gluing different copies of an arbitrary regular polytope. We reveal the inter-
play between complexity and geometry of the higher order networks gener-
ated by the model by studying the emergent community structure and the
degree distribution as a function of the regular polytope forming its build-
ing blocks. Additionally, we discuss the underlying hyperbolic nature of the
emergent geometry and we relate the spectral dimension of the higher-order
network to the dimension and nature of its building blocks.
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1 Introduction

Network Science [1–5] has allowed an incredible progress in the understanding
of the underlying architecture of complex systems and is having profound
implications for different fields ranging from brain research [6] and network
medicine [7] to global infrastructures [8].

It is widely believed [9] that in order to advance further in our under-
standing of complex systems it is important to consider generalized networks
structures. These include both multilayer networks formed by several inter-
acting networks [10,11] and higher order networks which allow going beyond
the framework of pairwise interactions [12–26].

Higher order networks can be essential when analyzing brain networks
[12, 27–30], protein interaction networks [31] or social networks [32, 33]. For
instance in brain functional networks, it is important to distinguish between
brain regions that interact as a pair, or as a part of a larger complex, yielding
their simultaneous co-activation [12]. Similarly, protein interaction networks
map the relations between protein complexes of the cell, which are formed
by several connected proteins that are able to perform a specific biological
function [31]. In social networks simplicial complexes arise in different con-
texts [32–35], as for instance in face-to-face interacting networks constituted
by small groups that form and dissolve in time, usually including more than
two people [32,33].

In many cases the building blocks of a higher order network structures
are d-dimensional simplices such as triangles, tetrahedra etc., i.e. a set of
(d + 1) nodes in which each node is interacting with all the others. In this
case higher order networks are called simplicial complexes. However, there
are some occasions in which it is important to consider higher order networks
formed by building blocks that are less densely connected than simplices, i.e
cell-complexes formed by gluing convex polytopes. Cell-complexes are of fun-
damental importance for characterizing self-assembled nanostructures [36] or
granular materials [37]. However examples where cell-complexes are relevant
also for interdisciplinary applications are not lacking. For instance, a pro-
tein complex is formed by a set of connected proteins, but not all proteins
necessarily bind to every other protein in the complex. Also in face-to-face in-
teractions, a social gathering of people might be organized into small groups,
where each group can include people that do not know each other directly.
These considerations explain the need to extend the present modelling frame-
work from simplicial complexes to general cell-complexes formed by regular
polytopes such as cubes, octahedra etc.

Modelling frameworks for simplicial complexes [12–26] include both equi-
librium static models that can be used as null models [20–26, 38] and non-
equilibrium growing models describing their temporal evolution [13–19]. How-
ever, modelling of cell-complexes has been mostly neglected by the network
science community.

Characterizing non-equilibrium growth models of cell-complexes allows
us to investigate the relation between the local geometrical structure of the
higher order networks and their global properties, revealing the nature of
their emergent geometry and their complexity.
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Interestingly, simplices and more in general convex polytopes have a nat-
ural geometrical interpretation and are therefore essential for investigating
network geometry [13,15]. As such simplicial complexes are widely adopted in
quantum gravity for investigating the geometry of space-time [39–41]. Net-
work geometry is also a topic of increasing interest for network scientists
which aim at gaining further understanding of discrete network structures
using geometry. This field is expected to provide deep insights and solid
mathematical foundation to the characterization of the community structure
of networks [42–44], contribute in inference problems [45] and shed new light
onto the relation between structure (and in specific network geometry) and
dynamics [27,46].

The recent interest in network geometry is reflected in the vibrant research
activity which aims at defining the curvature of networks and at extracting
geometrical information from network data using these definitions [47–53].
In a variety of cases [54–57] it has been claimed that actually the underlying
network geometry of complex networks is hyperbolic [58]. This hidden hy-
perbolic geometry is believed to be very beneficial for routing algorithms and
navigability [55,57,59]. While several equilibrium and non-equilibrium mod-
els imposing an underlying hyperbolic network geometry have been widely
studied and applied to real networks [60, 61], recently a significant progress
has been made in characterizing emergent hyperbolic network structures [15].
In particular it has been found that Network Geometry with Flavor [14] is a
comprehensive theoretical framework that provides a main avenue to explore
emergent hyperbolic geometry [15]. This model uses a non-equilibrium evo-
lution of simplicial complexes that is purely combinatorial, i.e. it makes no
assumptions on the underlying geometry. The hyperbolic network geometry
of the resulting structure is not a priori assumed but instead it is an emergent
property of the network evolution.

The theoretical framework of Network Geometry with Flavor shows that
non-equilibrium growth dictated by purely combinatorial and probabilistic
rules is able to generate an hyperbolic network geometry, and at the same
time determines a comprehensive theoretical framework able to generate very
different network structures including chains, manifolds, and networks grow-
ing with preferential attachment. Most notably this model includes as lim-
iting cases models that until now have been considered to be completely
independent such as the Barabási-Albert model [1] and the random Apollo-
nian network [62–65].

In this paper we extend the Network Geometry with Flavor originally
formulated for simplicial complexes to cell-complexes formed by any type
of regular polytopes. In particular we will focus on Network Geometry with
Flavor s ∈ {−1, 0, 1} built by subsequently gluing different copies of a regular
polytope along its faces. Note that in this paper we conside cell-complexes
formed by an arbitrary regular polytope but any cell-complex is pure, i.e. it
has only one type of regular polytope forming its building blocks.

Although cell-complexes can be in several occasions a realistic represen-
tation of network data, is not our intention to propose a very realistic model
of cell-complexes. Rather our goal is on one side to propose a very simple
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theoretical model for emergent geometry and on the other side to investigate
the interplay between its geometry and its complexity.

The network geometry is investigated by characterizing the Hausdorff,
the spectral [66,68–70] and the cell-complex’ topological dimension, together
with the ”holographic” nature of the model. The complexity of the resulting
network structures is studied by deriving under which conditions the result-
ing networks are scale-free and display a non-trivial emergent community
structure.

Finally, Network Geometry with Flavor can be considered as the natural
extension of the very widely studied framework of non-equilibrium growing
complex networks models (with and without preferetial attachment) to char-
acterize network geometry in any dimension. In this respect many non-trivial
results are obtained. For instance, we show that when working with simplices
scale-free networks can emerge from a dynamical rule that does not contain
an explicit preferential attachment mechanism. Additionally, we reveal that
even when preferential attachment of the regular polytopes is present, the
Network Geometry with Flavor might result in a homogeneous network struc-
ture in which the second moment of the degree distribution is finite in the
large network limit.

2 Simplicial Complexes and Higher Order Networks

Simplicial complexes provide the main example of higher order networks
where interactions are not only pairwise, but can include more than two
nodes. Simplicial complexes are formed by simplices glued along their faces.
A simplex of dimension d is a set of d+1 nodes and describes the many-body
interaction between these nodes. A simplex admits a natural geometrical
interpretation. For instance a simplex of dimension d = 0, 1, 2, 3, can be
identified with a node, a link, a triangle and a tetrahedron respectively. A
δ-dimensional face of a simplex α of dimension d > δ is a simplex α̂ formed
by a subset of δ + 1 of the nodes of α. A simplicial complex K of dimension
d is formed by a set of simplices of dimension δ ≤ d glued along their faces.
Additionally, this set must be closed under the operation of taking faces of
any simplex. Therefore, in mathematical terms it must satisfy two conditions:

a) the intersection α∩ α̃ of two simplices α ∈ K and α̃ ∈ K belonging to the
simplicial complex is a simplex of the simplicial complex, i.e. α ∩ α̃ ∈ K;

b) if the simplex α belongs to the simplicial complex, i.e. α ∈ K, then every
simplex α̂ which is a face of α (i.e. α̂ ⊂ α) must also belong to the
simplicial complex, i.e. α̂ ∈ K.

Among simplicial complexes we distinguish pure d-dimensional simplicial
complexes which are formed exclusively by d-dimensional simplices and their
faces.

Here we consider not only simplicial complexes, but we treat also cell-
complexes, which differ from simplicial complexes because they are formed
by subsequently gluing convex polytopes along their faces. In particular we
will focus on cell-complexes Q formed by identical d-dimensional regular
polytopes glued along their (d − 1)-faces, called here pure cell-complexes.



5

A pure cell-complex reduce to pure d-dimensional simplicial complex if the
regular polytope that constitute its building blocks is a d-dimensional simplex
[71].

A regular polytope of dimension d is a maximally symmetric d-dimensional
polytope having F identical (d − 1)-dimensional faces and M nodes. Each
node of a regular polytope has degree v and it is incident to the same num-
ber f of (d − 1)-dimensional faces. Each (d − 1)-face includes m nodes. A
d-dimensional simplex is a regular polytope. However, the number of regular
polytopes in dimension d ≥ 2 is larger than one. In Table 1 we report the
complete list of regular polytopes and their properties.

(1) Dimension d = 1
This is the trivial case in which the regular polytope is just a single link.

(2) Dimension d = 2
In dimension d = 2 the regular polytopes are the regular polygons, i.e.
triangles, squares, pentagons, hexagons etc.

(3) Dimension d = 3
In dimension d = 3 the regular polytopes are the Platonic solids, namely
the tetrahedron, the cube, the octahedron, the dodecahedron and the
icosahedron. The 5 Platonic solids are shown in Figure 1. These solids
have an underlying network structure which is planar as shown in Figure
2.

(4) Dimension d = 4
In dimension d = 4 the number of regular polytopes is 6, namely the
pentachoron, the tesseract, the hexadecacoron, the 24-cell, the 120-cell
and the 600-cell.

(5) Dimension d ≥ 5
In dimension d ≥ 5 the number of regular polytopes is 3, i.e. the d-simplex,
the d-hypercube and the d-orthoplex.

Here in the following we introduce some structural properties of the higher
order networks (simplicial complexes and cell-complexes) that will play a key
role in the following paragraphs.

Let us assign to each δ-dimensional face α of the pure cell-complex a
generalized degree κd,δ(α) indicating how many d-dimensional regular poly-
topes are incident to the face. Additionally we associate to each (d− 1) face
of the cell-complex an incidence number nα equal to the generalized degree
κd,d−1(α) of the same (d− 1)-face α minus one, i.e.

nα = κd,d−1(α)− 1.

Being a 0-dimensional face, every node i ∈ {1, 2, . . . , N} of the cell-
complex is also assigned a generalized degree κd,0(i) indicating how may
d-dimensional regular polytopes are incident to it. The degree ki of node
i is related to the generalized degree κd,0(i) by

ki = v + (v − d+ 1)(κd,0(i)− 1), (1)
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(a) (b) (c) (d) (e)

Fig. 1 All the regular polytopes in d = 3 (Platonic solids): (a) tetrahedron, (b)
cube, (c) octahedron, (d) dodecahedron, (e) icosahedron.

(a) (b) (c) (d) (e)

Fig. 2 The planar graphs that describe the skeleton of the regular polytopes in d =
3 (Platonic solids): (a) tetrahedron, (b) cube, (c) octahedron, (d) dodecahedron,
(e) icosahedron.

where v is the degree of each node in the regular polytope. Finally we note
that here we will focus mainly on network of pairwise interactions induced
by the higher order network, i.e. we will mostly focus on its skeleton.

3 Network Geometry with Flavor

The Network Geometry with Flavor [14, 15] is a non-equilibrium model de-
scribing the evolution of higher order networks. Originally this model has
been formulated to study the evolution and the emergent geometry of sim-
plicial complexes, here we extend the model to pure cell-complexes formed
by identical regular d-dimensional polytopes.

The Network Geometry with Flavor depends on the specific regular poly-
tope that form its building blocks and in particular on its dimension d.
Moreover it also depends on a parameter s called flavor taking values s ∈
{−1, 0, 1}.

The algorithm generating the Network Geometry with Flavor, is simply
stated.
At time t = 1 the higher-order network Q is formed by a single regular
polytope.
At each time t > 1 we choose a (d−1)-dimensional face α of the higher order
network with probability

Π [s]
α =

1

Z [s]
(1 + snα) (2)
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Table 1 Properties of all regular polytopes in dimension d: M number of nodes, F
number of faces, f number of (d− 1) faces incident to a node, m number of nodes
incident to a single (d− 1) face, v degree of a node

F M f m v

d = 1
link 1 2 1 1 1

d = 2
p-polygon p p 2 2 2

d = 3
tetrahedron 4 4 3 3 3
cube 6 8 3 4 3
octahedron 8 6 4 3 4
dodecahedron 12 20 3 5 3
icosahedron 20 12 5 3 5

d = 4
pentachoron 5 5 4 4 4
tesseract 8 16 4 8 4
hexadecachoron 16 8 8 4 6
24-cell 24 24 6 6 8
120-cell 120 600 4 20 4
600-cell 600 120 20 4 12

d > 4
simplex d+ 1 d+ 1 d d d
cube 2d 2d d 2d−1 d
orthoplex 2d 2d 2d−1 d 2(d− 1)

with

Z [s] =
∑
α′∈Q

(1 + snα′) (3)

and we glue a new regular polytope to it.
In this model, the necessary and sufficient (combinatorial) condition to get
a discrete manifold is that every (d− 1)-face of the higher order network has
incidence network nα ∈ {0, 1}. The higher network topology generated by
this model depends on the flavor s and on specific type of regular polytope
that forms the building block of the structure. Here we discuss the major
effect of considering different flavors.

(1) Flavor s = −1
In this case we can attach a d-dimensional regular polytope only to a
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face with nα = 0. In fact for nα = 1 we have Π
[−1]
α = 0. Therefore each

face of the higher order network will have a incidence number nα ∈ {0, 1}
resulting in a discrete manifold structure. We call these networks Complex
Network Manifolds [16].

(2) Flavor s = 0

In this case Π
[0]
α is constant for each face of the higher order network.

Therefore the attachment probability enforces a uniform attachment in
which every face has the same probability to attract new regular poly-
topes. Consequently the incidence number can take any value nα ∈ N0.

(3) Flavor s = 1

In this case the probability Π
[1]
α to attach a new regular polytope to the

face α is proportional to the generalized degree of the face κd,d−1(α) =
1 + nα, resulting in a explicit preferential attachment mechanism. Conse-
quently the incidence number can take any value nα ∈ N0.

The Network Geometry with Flavor been proposed in Ref. [14] and Com-
plex Network Manifolds have been first introduced in [16, 17] for describing
the evolution and growth of simplicial complexes. However the Network Ge-
ometry with Flavor reduces to other known models in some specific limits.

(1) Dimension d = 1
In dimension d = 1 the Network Geometry with Flavor is a growing tree
and reduces for s = −1 to a growing chain, for s = 0 to a tree growing
by uniform attachment, and for s = 1 it reduces to the Barabási-Albert
model with preferential attachment [1].

(2) Dimension d = 2
The Network Geometry with Flavor s = 0 having triangles as building
blocks has been first proposed in Ref. [72].

(3) Dimension d = 3
In dimension d = 3 the Network Geometry with Flavor s = −1 reduces
to a random Apollonian network [62–65].

Therefore the Network Geometry with Flavor can be considered as a the-
oretical framework which unifies and extends several well known network
models. Moreover as we will see in the next section it reveals an important
mechanism for emergent hyperbolic network geometry.

We observe that variations of this model can be envisaged in the following
directions:

(i) The present choice of the values s ∈ {−1, 0, 1} for the flavor s is driven
by the need to explore regions of the possible parameter space with very
distinct dynamics. Note however that the model can be as well studied
by taking any real positive value of s (which will enforce a preferential
attachment with initial attractivness of the faces [3]) or any rational neg-
ative value of s with −1 ≤ s < 0 (which will enforce a upper limit to the
number of polytopes that are incident to any given face).

(ii) The model can be easily extended to cell-complexes that are not pure by
allowing the gluing of regular polytopes having the same (d − 1)-faces.
For instance it is possible to consider a variation of the d = 3 Network
Geometry with Flavor in which tetrahedra, octahedra and icosahedra can
be glued along their triangular faces.
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(iii) The model can be extended by associating a fitness to the faces of the
cell-complexes and modifying the attachment probability along the lines
proposed in Refs. [14, 15]. This modification can lead to very interesting
topological phase transitions.

Despite the fact that these modifications of the model have significant
potential for understanding network geometry, in this paper, due to space
limitation, we limit our study to pure cell-complexes described by the Net-
work Geometry with Flavor s ∈ {−1, 0, 1} in which we do not consider the
effect of the fitness of the faces.

4 Emergent Hyperbolic Geometry

While the definition of the Network Geometry with Flavor is purely topolog-
ical, the emergent geometry is observed when one attributes equal length to
all the links. Attributing the same length to each link consists of making the
least biased assumption on their length. Therefore this procedure defines the
main path to explore the emergent hidden network geometry of the Network
Geometry with Flavor which is a combinatorial network model that makes
no explicit use of the hidden geometry.

The Network Geometry with Flavor are small world [2] for every flavor
s and any dimension d except from the special case s = −1, d = 1 in which
the resulting network is a chain [46]. Specifically in Network Geometry with
Flavor both the diameter D and the average shortest distance increase loga-
rithmically with the total number of nodes N . This implies that the number
of nodes in the network N increases exponentially with its diameter D, i.e.
N ' eαD where α > 0. Consequently, as long as we do not allow ”crossing”
of the simplices, their emergent geometry cannot be an Euclidean geometry
with finite Hausdorff dimension dH because in this case, we would observe
the power-law scaling N ' DdH . This observation implies that actually the
Hausdorff dimension dH of the Network Geometry with Flavor is infinite
dH =∞, with the only exception of the case s = −1, d = 1 in which dH = 1.

The emergent network geometry of the Network Geometry with Flavor is
hyperbolic [15] as long as (s, d) 6= (−1, 1). This can be shown by constructing
the natural hyperbolic embedding of the Network Geometry with Flavor in
the hyperbolic spaces Hd, and specifically the Poincaré ball model [15]. Let
us consider a Poincaré ball model of Hd. The Poincaré ball model includes
all the points of the unit ball Bn = {x ∈ Rd : |x| < 1}, with | . . . | indicating
the Euclidean norm. The Poicaré ball model is associated to the hyperbolic
metric dB assigning to each pair of points x,y ∈ Rd the distance

cosh dB(x,y) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
. (4)

Here we identify every d-dimensional polytope of our cell complex with an
ideal regular polytope of the Poincaré ball model. An ideal regular polytope
has all its nodes at the boundary of the hyperbolic ball, so all the nodes
i have a position ri ∈ Rd satisfying |ri| = 1. This construction allows for
having all the connected nodes at equal hyperbolic distance. Note however
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Fig. 3 The emergent hyperbolic geometry of 2-dimensional Network Geometry
with Flavor is shown for Network Geometry formed by triangles (panel a) and
squares (panel b). The networks have flavor s = −1 and N = 100 number of nodes.

(b)(a)

Fig. 4 The emergent hyperbolic geometry of 3-dimensional Network Geometry
with Flavor is shown for Network Geometry formed by tetrahedra (panel a) and
cube (panel b). The networks have flavor s = −1 and N = 200 number of nodes.

this distance is infinite which is the condition we need to satisfy for having an
embedding that for infinite network size fills the entire hyperbolic space. In
Figure 3 and Figure 4 we show some examples of the hyperbolic embedding
of Network Geometry with Flavor of dimension d = 2 and dimension d = 3
respectively. For dimension d = 2 we have considered the Network Geometry
with Flavor s = −1 formed by triangles or squares, for dimensions d = 3
we have considered the Network Geometry with Flavor s = −1 formed by
tetrahedra and cubes.



11

5 Complex Network Manifolds Topological Dimensions

The Network Geometry with Flavor has a topological dimension d given by
the dimension of the d dimensional regular polytope that forms its building
blocks.

In particular Complex Network Manifolds made by d-dimensional sim-
plices are d-dimensional manifolds with boundary having all their nodes re-
siding at the boundary of the manifold. Additionally the Complex Network
Manifolds are (d − 1)-connected meaning that each d dimensional regular
polytope can be connected to any other d dimensional regular polytope by
paths that go from one d dimensional polytope to another one if they share
a (d − 1)-face. Given these properties, the Complex Network Manifolds can
be interpreted as (d− 1)-dimensional manifolds without a boundary by con-
sidering the cell-complex formed by all the (d− 1)-faces with nα = 0 and all
their lower-dimensional faces. In this way the d-dimensional manifold can be
projected on its (d−1)-dimensional boundary without losing any information
about the network skeleton, i.e. while keeping all the links.

For example Complex Network Manifolds builded by 3-dimensional regu-
lar polytopes can be reduced to 2-dimensional closed manifolds. Specifically
a Complex Network Manifold build from tetrahedra can be reduced to a
closed d = 2 manifold whose faces are initially four identical triangles which
evolve though a sequence of successive triangulations forming a generalized
Apollonian network (see Figure 5).

These properties of Complex Network Manifolds reveal the ”holographic
character” of this model and indicate that these structures are interesting for
the study of network geometry of complex networks and are closely related
to tensor networks which have been attracting large interest in the quantum
information community (see for instance their use in [73]).

6 Complexity and Degree Distribution

In order to characterize the emerging complexity of the Network Geometry

with Flavor, in this paragraph we derive the degree distribution P
[s]
d (k) of

the Network Geometry with Flavor s and dimension d. In particular here our
aim to to explore under which conditions on the flavor s, the dimensionality
d and the nature of the regular polytope we observe that the Network Ge-
ometry with Flavor has a scale-free topology. A scale-free network topology
is observed when the degree distribution can be approximated for k � 1 as
a power-law

P
[s]
d (k) ' Ck−γ (5)

with power-law exponent

γ ∈ (2, 3]. (6)

This range of power-law exponents indicates that the network is dominated
by hubs nodes and the second moment of the degree distribution 〈k2〉 is
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Fig. 5 A Complex Network Manifold in dimension d = 3 can be studied as a
3-dimensional manifold with boundary (panel a) or it can be projected in two
dimensions in which it can be interpreted as a 2-dimensional manifold without
boundary (panel b). Here we show as an example the Complex Network Manifold
formed by tetrahedra in dimension d = 3 and its planar projection reducing to
a random planar Apollonian network when we consider the position of the nodes
in the plane (φ, θ) corresponding to the azimuth and elevation of the Euclidean
unit ball (here for clarity we have omitted to draw the links which connect nodes
across the figure). Note that the Euclidean 2-dimensional embedding of the network
requires to abandon the assumption that all the links have equal length.

diverging as the network size N grows, i.e. 〈k2〉 → ∞ as N →∞ also if the
average degree 〈k〉 is independent of N [1,3–5]. Most notably these networks
are widely represented in real complex systems and have dynamical properties
strongly affected by their underlying complex scale-free topology [1, 3–5].

In order to find the degree distribution P
[s]
d (k) let us first derive the

expression for the probability P̃
[s]
d (κ) that a random node has generalized

degree κ using the master equation approach [3].
For a realization of the Network Geometry with Flavor s and dimension

d, let us indicate with N
[s]
d (κ, t), the average number of nodes that at time t

have generalized degree κ. This quantity obeys the master equation

N
[s]
d (κ, t+ 1) = N

[s]
d (κ, t) + Π̃(κ− 1)N

[s]
d (κ− 1, t)(1− δκ,1)

−Π̃(κ)N
[s]
d (κ, t) + (M −m)δκ,1, (7)

where Π̃(κ) is the probability that we attach a regular polytope to a (d−1)-
face including a node with generalized degree κ, M − m is the number of
nodes added to the Network Geometry with Flavor at every time step and
δx,y is the Kronecker delta.

It can be shown (see Appendix for details of the derivation) that Π̃(κ) is
approximated for t� 1 by

Π̃(κ) =
f + (f − 1 + s)(κ− 1)

(F − 1 + s)t
. (8)
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This expression indicates that in Network Geometry with Flavor, we can
observe an emergent preferential attachment. In fact for f − 1 + s > 0 the
probability Π̃(κ) increases linearly with the generalized degree κ also when
the flavor s ∈ {−1, 0}, i.e. also when the model definition does not con-
tain an explicit preferential attachment. Therefore in this case the emergent
preferential attachment is an outcome of the network geometry.

We observe that emergent preferential attachment is observed if and only
if the dimension d satisfies d− 1 + s > 0. In fact the condition d− 1 + s > 0
is equivalent to the condition f − 1 + s > 0 (see Table 1 for the values of f
as a function of d). Moreover we have f − 1 + s = 0 only for d − 1 + s = 0,
i.e. only for (d, s) = (2,−1) and (d, s) = (1, 0). Finally only for dimension
d = 1 and flavor s = −1 we can have f − 1 + s = −1. This case should be
consider somewhat separately because the network evolution produces a one
dimensional chain having only two nodes with generalized degree κ = 1 and
all the other nodes with generalized degree κ = 2. In fact Π̃(κ) > 0 only for
κ = 1.

For parameter values (s, d) 6= (−1, 1) the number of nodes that can be
incident to the new polytope increases with the network size, generating a
small-world topology. In this case we can solve the master equation using
techniques extensively used for growing network models [3].

Using Eq. (8) and imposing that for parameter values (s, d) 6= (−1, 1) in
the large network limit the number of nodes with generalized degree κ grows
as

N
[s]
d (κ, t) ' (M −m)tP̃

[s]
d (κ) (9)

we can solve the master equation (Eq. (7)) finding the exact asymptotic result

for the generalized degree distribution P̃
[s]
d (κ) valid as t→∞.

In this way it can be shown that for d− 1 + s = 0 the generalized degree

distribution P̃
[s]
d (κ) is exponential and given by

P̃
[s]
d (κ) =

F − f
F

(
f

F

)κ−1
. (10)

For (d − 1 + s) > 0, however the generalized degree distribution P̃
[s]
d (κ) is

given by

P̃
[s]
d (κ) = C̃

Γ (κ− 1 + f/(f − 1 + s))

Γ (κ+ (F − 1 + s+ f)/(f − 1 + s))
. (11)

where C̃ is a constant given by

C̃ =
F − 1 + s

F − 1 + s+ f

Γ (1 + (F − 1 + s+ f)/(f − 1 + s))

Γ (f/(f − 1 + s))
. (12)

Using these results of the generalized degree distribution P̃
[s]
d (κ) let us

now derive the degree distribution P̃
[s]
d (k).
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In the case s = −1, d = 1 the Network Geometry with Flavor is a one-
dimensional chain and it is easy to see that the degree distribution is bimodal
and given by

P
[s]
d (1) =

2

N
,

P
[s]
d (2) = 1− 2

N
, (13)

with P
[s]
d (k) = 0 for every k > 2. In fact in a chain only two nodes have

degree k = 1 and all the other nodes have degree k = 2.
For (s, d) 6= (−1, 1), using Eq. (1) we can derive the expression for the

degree distribution P
[s]
d (k) in terms of the generalized degree distribution

P̃
[s]
d (κ)

P
[s]
d (k) = P̃

[s]
d

(
k − v

v − d+ 1
+ 1

)
. (14)

Therefore for d − 1 + s = 0 (for which f = d) the degree distribution is
exponential and given by

P
[s]
d (k) =

F − f
F

(
f

F

)k−v
, (15)

while for d− 1 + s > 0 it is given by

P
[s]
d (k) = C̃

Γ [(k − v)/(v − d+ 1)− 1 + f/(f − 1 + s)]

Γ [(k − v)/(v − d+ 1) + (F − 1 + s+ f)/(f − 1 + s)]
. (16)

Therefore for d − 1 + s > 0 the degree distribution decays as a power-law,
i.e. follows Eq. (5) with power-law exponent γ given by

γ = 1 +
F − 1 + s

f − 1 + s
. (17)

In Figure 6, 7 and Figure 8 we show the agreement between these theoretical
expectations and the degree distribution of simulated Network Geometry
with Flavor s ∈ {−1, 0, 1} and dimension d ≤ 5 built by simplices, hypercubes
and orthoplexes respectively.

From this analytical derivation of the degree distribution it follows that
the Network Geometry with Flavor has power power-law degree distribution
if and only if

d > 1− s. (18)

In Table 6 we summarize the functional form (Bimodal, Exponential, Power-
law) of the Network Geometry with Flavor as a function of the dimension
d and the flavor s. Note that this classification is valid for any Network
Geometry with Flavor having dimension d and flavor s independently of the
specific regular polytope that forms its building blocks.
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Table 2 Degree distribution of Network Geometry with Flavor as a function of
the flavor s and the dimension d.

flavor s = −1 s = 0 s = 1

d = 1 Bimodal Exponential Power-law

d = 2 Exponential Power-law Power-law

d ≥ 3 Power-law Power-law Power-law

Table 3 Power-law exponent γ of the degree distribution of Network Geometry
with Flavor s built by gluing regular, convex polytopes in dimension d.

γ s = −1 s = 0 s = 1

d = 1
link N/A N/A 3

d = 2
p-polygon N/A p 1 + p

2

d = 3
tetrahedron 3 2 1

2
2 1
3

cube 5 3 1
2

3
octahedron 4 3 1

3
3

dodecahedron 11 6 1
2

5
icosahedron 7 5 3

4
5

d = 4
pentachoron 2 1

2
2 1
3

2 1
4

tesseract 4 3 1
3

3
hexadecachoron 3 1

3
3 1
7

3
24-cell 6 1

2
5 3
5

5
120-cell 60 40 2

3
31

600-cell 34 2
9

32 10
19

31

d > 4
simplex 2 + 1

d−2
2 + 1

d−1
2 + 1

d

cube 3 + 2
d−2

3 + 1
d−1

3

orthoplex 3 + 1

2(d−2)−1
3 + 1

2d−1−1
3
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Fig. 6 The degree distribution P
[s]
d (k) of the Network Geometry with Flavor

formed by simplices, having flavor s = −1, 0, 1 and dimension d = 1, 2, 3, 4 (sym-
bols) is compared to the analytical predictions (solid line). The Network Geometry
with Flavor has N = 104 nodes.

If we make the distinction between scale-free degree distributions with
power-law exponents γ ∈ (2, 3] and more homogeneous power-law exponents
γ > 3 we notice that not only the dimensionality of the regular polytope but
also its geometry has important consequences.

In the case of simplicial complexes, the power-law degree distributions of
the Network Geometry with Flavor are always scale-free. This implies that
explicit preferential attachment imposed by the flavor s = 1 always gives rise
to scale-free simplicial complexes topologies with power-law exponent γ ∈
(2, 3]. Moreover this result indicates that the observed emergent preferential
attachment occurring for s ∈ {0, 1} implies that both simplicial Complex
Network Manifolds (flavor s = −1) and simplicial complexes evolving by
uniform attachment (flavor s = 0) are scale-free, provided that the dimension
is sufficiently high. In fact the emergent preferential attachment is observed
only for d− 1 + s > 0.

However when we include the treatment of Network Geometry with Flavor
formed by any type of regular polytope the rich interplay between network
geometry and complexity is revealed and a much more nuanced scenario
emerges.

The expression for the power-law exponent γ (Eq. (17)) together with the
condition to get a scale-free distribution (Eq. (6)) indicates that the Network
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Fig. 7 The degree distribution P
[s]
d (k) of the Network Geometry with Flavor

formed by hypercubes, having flavor s = −1, 0, 1 and dimension d = 2, 3, 4, 5 (sym-
bols) is compared to the analytical predictions (solid line). The Network Geometry
with Flavor has N = 104 nodes.

Geometry with Flavor s and dimension d > 1− s are scale-free only if

F − 1 + s

f − 1 + s
≤ 2. (19)

This relation implies the following dependence of the scale-free property with
the dimension d and the flavor s.

(1) Flavor s = −1
In dimension d ≥ 3 the Network Geometry with Flavor are power-law
distributed. However only the simplicial complexes are scale-free.

(1) Flavor s = 0
In dimension d ≥ 2 the Network Geometry with Flavor are power-law
distributed. However only the simplicial complexes are scale-free.

(3) Flavor s = 1
The Network Geometry with Flavor are always power-law distributed.
For dimension d = 1 and d ≥ 4 Network Geometry with Flavor s = 1 im-
plying an explicit preferential attachment are always scale-free. However
for dimension d ∈ {2, 3, 4} they are not always scale-free.
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Fig. 8 The degree distribution P
[s]
d (k) of the Network Geometry with Flavor

formed by orthoplexes, having flavor s = −1, 0, 1 and dimension d = 2, 3, 4, 5 (sym-
bols) is compared to the analytical predictions (solid line). The Network Geometry
with Flavor has N = 104 nodes.

– For d = 2 the Network Geometry with Flavor s = 1 are not scale-free
if they are formed by polygons different from triangles and squares.

– For d = 3 the Network Geometry with Flavor s = 1 are not scale-free
if they are formed by dodecahedra and icosahedra.

– For d = 4 the Network Geometry with Flavor s = 1 are not scale-free
if they are formed by the 24-cell, the 120-cell and the 600-cell.

7 Complexity and Emergent Community Structure

An important signature of the complexity of the Network Geometry with
Flavor is its emergent community structure. In fact this model, constraining
the microscopic structure of the network formed by identical, highly clus-
terised building blocks (the regular polytopes), spontaneously generates a
mesoscale structure organized in communities of nodes more densely con-
nected with each other than with the other nodes of the network [15, 43].
In order to characterize the emergent mesoscale structure of the Network
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Fig. 9 The emergent community structure of Network Geometry with Flavor is
revealed by calculating the average modularity M found by the GenLouvain algo-
rithm [74, 75] as a function of the dimension d for different flavors s = −1, 0, 1.
The modularity is averaged over 10 realizations of the Network Geometry with
Flavor with N = 104 nodes. Panel (a) refers to the Network Geometry with Flavor
constructed from d-dimensional simplices, panel (b) refers to the Network Geom-
etry with Flavor constructed from d-dimensional hypercubes and panel (c) to the
Network Geometry with Flavor constructed from d-dimensional orthoplexes.

Geometry with Flavor we have estimated the maximal modularity M [4] of
the network by averaging the results obtained using the GenLouvain algo-
rithm [74,75] over different realizations of the Network Geometry with Flavor
having up to dimension d = 5 (see Figure 9). From Figure 9 it is possible
to appreciate that while the modularity M decreases as the topological di-
mensions d increases, its values remain significant for every flavor s up to
dimension d = 5.

A non-trivial community structure is observed very widely in network
data. Therefore the emergent community structure of the Network Geometry
with Flavor is a desired property for the modelling of real complex networks
observed also in other growing network models [15, 43, 44, 76]. However the
community structures of real datasets can display significant differences for
different networks. Therefore here, it is not our intention to fit the Network
Geometry with Flavor to any specific real data, rather our aim is to indi-
cate that the Network Geometry with Flavor can provide a simple stylized
mechanism to generate a discrete network structure with communities.

8 Spectral Dimension of Network Geometry with Flavor

The spectral dimension dS [66–70] of a networks characterizes how the struc-
ture of the network and its underlying network geometry affects the property
of diffusion and has profound implications for quantum networks as well [77].
The Laplacian matrix L of the network of elements

Lij = δijki − aij , (20)

where a indicates the adjacency matrix of the network characterizes fully the
properties of diffusion on a given network. In fact the probability diffusion of
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a given continuous variable xi defined on each node i of the network follows

dxi(t)

dt
= −

N∑
j=1

Lijxj(t). (21)

with given initial condition xi(0) = δi,i0 describing the initial concentration
of the continuous variable x on the node i0. The spectral properties of the
Laplacian fully determine the diffusion properties. The Laplacian has real
spectrum with eigenvalues 0 = λ1 ≤ λ2 . . . ≤ λN . The degeneracy of the zero
eigenvalue is equal to the number of connected components of the network.
Therefore for Network Geometry with Flavor the zero eigenvalue is not de-
generate and λ2 > 0. Let us indicate with ρ(λ) the density of eigenvalues.
The spectral dimension, if it exist, characterizes the power-law scaling of ρ(λ)
as a function of λ

ρ(λ) ∝ λ
dS
2 −1, (22)

valid for 0 < λ� 1. In particular network models with finite spectral dimen-
sion must have λ2 → 0 as N →∞.
In discrete lattices the spectral dimension dS is known to be equal to the
Hausdorff dimension dH of the lattice and the dimension d of the unitary cell
of the lattice, however the spectral dimension of a network in general is not
equal to its Hausdorff dimensional and satisfies dS ≤ dH [66]. Additionally
if we consider the skeleton of a d-dimensional simplicial complex in general
we will not find that the spectral dimension dS is equal to d.

Note that not every network has a spectral dimension. Most notably
in networks in which the smallest non-zero eigenvalue λ2 is well separated
from the smallest eigenvalue λ1 = 0, the spectral dimension is not defined
and we say in that case that the network has a spectral gap (technically
a model having a spectral gap means that λ2 is not vanishing in the large
network limit). However the presence of a spectral dimension is the rule
in networks with a non-trivial underlying geometry like lattices and fractal
structures [66–70]. While in presence of the spectral gap, convergence to the
steady state of the diffusion dynamics is exponentially fast with a typical
time scale τ = 1/λ2, in absence of a spectral gap it can be much slower.
In fact when the spectral gap closes and the network has a finite spectral
dimension dS the density distribution at the starting node asymptotically in
time decays as

π(t) ∝ t−
dS
2 . (23)

In presence of a spectral dimension, given that Eq. (22) holds, the cumu-
lative density of eigenvalues of the Laplacian ρc(λ) obeys the scaling relation

ρc(λ) ∝ λ
dS
2 , (24)

for 0 < λ � 1. Figure 10 shows ρc(λ) for Network Geometry with Flavor
s ∈ {−1, 0, 1} formed by d-dimensional simplices, d-dimensional hypercubes
and d-dimensional orthoplexes up to d = 7. From this figure it is apparent
that these cell-complexes have a finite spectral dimension.
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Fig. 10 The cumulative distribution of eigenvalues ρc(λ) of the Laplacian matrix
is shown versus λ for the Network Geometry with Flavor formed by polytopes of
dimensions d = 1 (blue symbols), d = 2 (red symbols), d = 3 (yellow symbols),
d = 4 (violet symbols), d = 5 (green symbols), d = 6 (light blue symbols) and
d = 7 (dark red symbols). Panels (a), (b), (c) refer to Complex Network Geometry
formed by d-dimensional simplices, with flavor s = −1, s = 0 and s = 1 respectively.
Panels (d), (e), (f) refer to Complex Network Geometry formed by d-dimensional
hypercubes of flavor s = −1, s = 0 and s = 1 respectively. Panels (g), (h), (i)
refer to Complex Network Geometry formed by d-dimensional orthoplexes of flavor
s = −1, s = 0 and s = 1 respectively. Here Network Geometry with Flavor have
N = 104 nodes and the cumulative distribution of eigenvalues is averaged over 100
network realizations. The Complex Network Manifold of dimension d = 1 is only
defined for simplicial complexes, and only shown for flavors s ∈ {0, 1} because the
case s = −1 is trivial (linear chain).

Starting from ρc(λ) we have numerically evaluated the spectral dimension
dS of the Network Geometry with Flavor (see Figure 11) finding that the
spectral dimension dS of the Network Geometry with Flavor can be larger
or smaller than d depending on the value of the flavor s and the nature of
the polytopes that form its building blocks. Moreover our result indicate that
while for simplicial complexes the spectral dimension dS increases faster than
linearly with d, for cell-complexes formed by hypercubes or orthoplexes the
spectral dimension tends to saturate. Specifically for simplicial complexes the
spectral dimension dS can be well fitted by

dS = ād2 + b̄d+ c̄, (25)

with coefficients ā, b̄, c̄ depending on the flavor s as shown in Table 8. Note
that we have compared the quadratic fit of dS versus d to a simpler linear
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Fig. 11 The spectral dimension dS is shown as a function of the topological dimen-
sion d for the Network Geometry with Flavor formed by different types of regular
polytopes. Panels (a), (b), (c) refer to Complex Network Geometry formed by d-
dimensional simplices, with flavor s = −1, s = 0 and s = 1 respectively. Panels (d),
(e), (f) refer to Complex Network Geometry formed by d-dimensional hypercubes
of flavor s = −1, s = 0 and s = 1 respectively. Panels (g), (h), (i) refer to Complex
Network Geometry formed by d-dimensional orthoplexes of flavor s = −1, s = 0
and s = 1 respectively. Here Network Geometry with Flavor have N = 104 nodes
and the spectral dimension ds is averaged over 100 network realizations, the error
bars indicating the standard deviation.

fit, performing a F-test, which yields very small p-values (p < 0.01) for all
values of s, confirming the validity of the quadratic fit. For cell-complexes
formed by d-dimensional hypercubes or d-dimensional orthoplexes, the spec-
tral dimension dS can be fitted by

dS = ã− b̃e−d/c̃, (26)

with coefficients ã, b̃, c̃ shown in Table 8.
These results point out the important role of the regular polytope forming

the building blocks of the Network Geometry with Flavor in determining its
geometrical properties.

9 Conclusions

In this paper we have characterized the Network Geometry with Flavor
s ∈ {−1, 0, 1} which are cell complexes built by gluing identical regular poly-
topes along their faces. The flavor s = −1 imposes that the cell complexes
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Table 4 Fitted coefficients of Equation (25) and (26) for Network Geometry with
Flavor formed by simplicies, hypercubes and orthoplexes.

ā b̄ c̄

Simplices s = −1 0.09(1) 0.4(1) 0.8(1)

s = 0 0.11(2) 0.3(1) 1.5(2)

s = 1 0.07(1) 0.8(1) 1.0(1)

ã b̃ c̃

Hypercubes s = −1 2.38(1) 1.4(2) 1.4(2)

s = 0 2.49(3) 1.0(2) 1.7(4)

s = 1 2.55(3) 1.0(4) 2(1)

Orthoplexes s = −1 2.79(4) 1.9(2) 0.4(1)

s = 0 2.78(1) 1.7(1) 0.51(2)

s = 1 2.76(1) 1.4(1) 0.54(3)

generated by the Network Geometry with Flavor s = −1 are manifolds also
called Complex Network Manifolds. The flavor s = 0 indicates that the cell
complexes grow by uniform attachment of the new polytope to a random
(d − 1)-face. The flavor s = 1 indicates that the model includes an explicit
preferential attachment of the new polytopes to (d− 1)-faces that have large
number of polytopes already attached to them.

This purely topological model generates cell complexes with emergent hy-
perbolic network geometry revealed by imposing that every link has equal
length. Here we characterize the interplay between the emergent geometry of
Network Geometry with Flavor and complexity. Specifically we characterize
under which conditions the Network Geometry with Flavor are scale-free.
We observe that Network Geometry with Flavor can display or not display
a scale-free degree distribution depending on the dimension d flavor s and
specific type of regular polytope that forms its building blocks. Interestingly
the Network Geometry with Flavor which is made by simplices (and are
therefore simplicial complexes) has notable properties that makes it differ-
ent from other realizations of the Network Geometry formed by other types
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of regular polytopes. In fact in dimension d > 2 the simplicial complexes
are scale-free for every flavor s ∈ {−1, 0, 1} while for Network Geometry
formed by other types of regular polytopes not even in presence of an ex-
plicit preferential attachment (flavor s = 1) we are always guaranteed to
obtain a scale-free degree distribution. Additionally Network Geometry with
Flavor displays another important signature of complexity, i.e. they have a
non-trivial emergent community structure.

Interestingly the special role of simplicial complexes is also revealed by
the spectral properties of the Network Geometry with Flavor which depend
on the nature of the specific regular polytope that forms its building block.
For instance if the building block is a d-simplex we have found that the
spectral dimension dS increases with the dimension d, while if the building
block is an d-dimensional hypercube and for the d-dimensional orthoplex the
spectral dimensions tend to saturate as the dimension d increases.

This work can be extended in different directions. First of all there are
very clear paths leading to possible generalizations of the model including
other values of the flavor, the introduction of a fitness of the faces of the
polytope or the extention of the model beyond pure cell-complexes. Secondly
this theoretical framework provides an ideal setting to study the interplay
between network geometry and dynamics such as frustrated synchroniza-
tion [46]. Finally this framework is very promising for establishing close con-
nections between growing network models and tensor networks.

Appendix: Derivation of Eq. (8)

In this appendix our goal is to derive Eq. (8) providing the expression for the

probability Π̃(κ) to glue a new regular polytope which increases the generalized
degree of a node having generalized degree κ. Since in the Network Geometry with
Flavor one polytope is added at each time step, the probability Π̃i that we glue a
new regular polytope to a (d−1)-face α incident to a node i (i.e. i ⊂ α) is given by

Π̃i =
∑
α|i⊂α

Π [s]
α =

∑
α|i⊂α

1 + snα
Z [s]

. (27)

For t� 1 we note that we can approximate Z [s] is given by

Z [s] =
∑
α∈Q

(1 + snα) = F + (F − 1 + s)(t− 1) ' (F − 1 + s)t, (28)

where the last expression is the approximate expression for t � 1. In fact for
s = −1 each new regular polytope introduces F − 1 new (d − 1)-faces each one

contributing one to Z [s]. However the (d − 1)-face α to which we attach the new
polytope acquires incidence number nα = 1 and therefore its contribution should
be removed from Z [s]. Therefore Z [−1] ' (F − 2)t. For s = 0, Z [0] simply counts
the total number of different faces, therefore each new polytope contributes by a
term given by (F − 1) to the sum corresponding the the number of novel (d − 1)

faces that each regular polytope introduces. Therefore Z [−1] ' (F − 1)t. Finally
for s = 1, each face is counted proportional to the number of polytopes that are
incident to it. Therefore any new regular polytope contributes by a term given by
F and Z [−1] ' Ft.
If a node has generalized degree κd,0(i) = κ = 1 then it must be incident to f faces
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α each one belonging to the same regular polytope. It follows that in this case the
numerator of the left hand side of Eq. (27) reads∑

α|i⊂α

(1 + snα) = f. (29)

For nodes with generalized degree κd,0(i) = κ > 1, by following the same line of
arguments presented above for deriving Eq. (28) it can be easily shown that∑

α|i⊂α

(1 + snα) = f + (f − 1 + s)(κ− 1). (30)

In fact each new regular polytope attached to the node after the initial one intro-
duces f−1 new (d−1)-faces incident to node i and therefore contributes by a term
(f − 1 + s) to the sum.

Therefore the probability Π̃(κ) that we add a new polytope to a node with
generalized degree κi = κ is given for t� 1 by

Π̃(κ) =
f + (f − 1 + s)(κ− 1)

(F − 1 + s)t
. (31)
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Popularity versus similarity in growing networks. Nature 489, 537 (2012).

62. Andrade, Jr J. S., Herrmann, H. J., Andrade, R. F.S. & Da Silva, L. R. Apol-
lonian networks: Simultaneously scale-free, small world, euclidean, space filling,
and with matching graphs. Phys. Rev. Lett. 94, 018702 (2005).

63. Andrade, R. F.S., & Herrmann, H. J. Magnetic models on Apollonian networks.
Phys. Rev. E 71, 056131 (2005).
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