301 research outputs found

    Исследование и разработка гистерезисных электрических машин на основе деформируемого сплава Fe-Cr-Co

    Get PDF
    В ходе научно-квалификационной работы исследован материал ротора синхронного гистерезисного двигателя (СГД) из сплава 22Х15КА ГОСТ 24897-81. Получены динамические магнитные характеристики сплава на частотах перемагничивания от 50 Гц до 2 кГц. Представлены результаты исследования СГД в программной среде AnsysMaxwell 2D/3D.In the course of the scientific and qualifying work, the rotor material of the synchronous hysteresis motor from alloy 22Х15КА GOST 24897-81 was investigated. Dynamic magnetic characteristics of the alloy at the magnetization reversal frequencies from 50 Hz to 2 kHz are obtained. The results of the study of a synchronous hysteresis motor in the software environment of AnsysMaxwell 2D / 3D are presented

    A global disorder of imprinting in the human female germ line

    Get PDF
    Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment

    Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    Get PDF
    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.All authors are members of the EUCID.net network, funded by COST (BM1208). TE is funded by the German Ministry of research and education (01GM1513B). GPdN is funded by I3SNS Program of the Spanish Ministry of Health (CP03/0064; SIVI 1395/09), Instituto de Salud Carlos III (PI13/00467) and Basque Department of Health (GV2014/111017).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13148-015-0143-

    Elsődleges genetikai vizsgálat Prader–Willi-szindróma igazolására

    Get PDF
    INTRODUCTION: According to the international literature, DNA methylation analysis of the promoter region of SNRPN locus is the most efficient way to start genetic investigation in patients with suspected Prader-Willi syndrome. AIM: Our aim was to develop a simple, reliable first-tier diagnosis to confirm Prader-Willi syndrome, therefore to compare our self-designed simple, cost-efficient high-resolution melting analysis and the most commonly used methylation-specific multiplex ligation-dependent probe amplification to confirm Prader-Willi syndrome. METHOD: We studied 17 clinically suspected Prader-Willi syndrome children and their DNA samples. With self-designed primers, bisulfite-sensitive polymerase chain reaction, high-resolution melting analysis and, as a control, methylation-specific multiplex ligation-dependent probe amplification were performed. RESULTS: Prader-Willi syndrome was genetically confirmed in 6 out of 17 clinically suspected Prader-Willi syndrome patients. The results of high-resolution melting analysis and methylation-specific multiplex ligation-dependent probe amplification were equivalent in each case. CONCLUSION: Using our self-designed primers and altered bisulfite-specific PCR conditions, high-resolution melting analysis appears to be a simple, fast, reliable and effective method for primarily proving or excluding clinically suspected Prade-Willi syndrome cases. Orv Hetil. 2018; 159(2): 64-69

    myKaryoView: A Light-Weight Client for Visualization of Genomic Data

    Get PDF
    The Distributed Annotation System (DAS) is a protocol for easy sharing and integration of biological annotations. In order to visualize feature annotations in a genomic context a client is required. Here we present myKaryoView, a simple light-weight DAS tool for visualization of genomic annotation. myKaryoView has been specifically configured to help analyse data derived from personal genomics, although it can also be used as a generic genome browser visualization. Several well-known data sources are provided to facilitate comparison of known genes and normal variation regions. The navigation experience is enhanced by simultaneous rendering of different levels of detail across chromosomes. A simple interface is provided to allow searches for any SNP, gene or chromosomal region. User-defined DAS data sources may also be added when querying the system. We demonstrate myKaryoView capabilities for adding user-defined sources with a set of genetic profiles of family-related individuals downloaded directly from 23andMe. myKaryoView is a web tool for visualization of genomic data specifically designed for direct-to-consumer genomic data that uses publicly available data distributed throughout the Internet. It does not require data to be held locally and it is capable of rendering any feature as long as it conforms to DAS specifications. Configuration and addition of sources to myKaryoView can be done through the interface. Here we show a proof of principle of myKaryoView's ability to display personal genomics data with 23andMe genome data sources. The tool is available at: http://mykaryoview.com

    Physicians' experiences with end-of-life decision-making: Survey in 6 European countries and Australia

    Get PDF
    Background: In this study we investigated (a) to what extent physicians have experience with performing a range of end-of-life decisions (ELDs), (b) if they have no experience with performing an ELD, would they be willing to do so under certain conditions and (c) which background characteristics are associated with having experience with/or being willing to make such ELDs. Methods: An anonymous questionnaire was sent to 16,486 physicians from specialities in which death is common: Australia, Belgium, Denmark, Italy, the Netherlands, Sweden and Switzerland. Results: The response rate differed between countries (39–68%). The experience of foregoing life-sustaining treatment ranged between 37% and 86%: intensifying the alleviation of pain or other symptoms while taking into account possible hastening of death between 57% and 95%, and experience with deep sedation until death between 12% and 46%. Receiving a request for hastening death differed between 34% and 71%, and intentionally hastening death on the explicit request of a patient between 1% and 56%. Conclusion: There are differences between countries in experiences with ELDs, in willingness to perform ELDs and in receiving requests for euthanasia or physician-assisted suicide. Foregoing treatment and intensifying alleviation of pain and symptoms are practiced and accepted by most physicians in all countries. Physicians with training in palliative care are more inclined to perform ELDs, as are those who attend to higher numbers of terminal patients. Thus, this seems not to be only a matter of opportunity, but also a matter of attitude

    Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    Get PDF
    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS
    corecore