2,460 research outputs found

    Mean field approximation for the dense charged drop

    Get PDF
    In this note, we consider the mean field approximation for the description of the probe charged particle in a dense charged drop. We solve the corresponding Schr\"{o}dinger equation for the drop with spherical symmetry in the first order of mean field approximation and discuss the obtained results.Comment: 8 page

    STUDY OF THE FORMATION MECHANISM OF GAS HYDRATES OF METHANE IN THE PRESENCE OF SURFACE-ACTIVE SUBSTANCES

    Get PDF
    Досліджено вплив поверхнево-активних речовин на механізм утворення газових гідратів метану. Визначено значення критичної концентрації міцелоутворення (ККМ) розчинів дібутілфенола, обробленого окисом етилену (ДБ), а також синтанолів (ДС-10, ДС-20). Виявлено, що завдяки процесу солюбілізації відбувається утворення мікрогетерогенних наночасток, які призводять до зміни складу газогідратів і швидкості утворення Ключові слова: газогідрати метану, міцелоутворення, поверхневий натяг, міжфазовий електричний потенціал, швидкість утворенняИсследовано влияние поверхностно-активных веществ на механизм образования газовых гидратов метана. Определены значения критической концентрации мицеллообразования (ККМ) растворов дибутилфенола, обработанного окисью этилена (ДБ), а также синтанолов (ДС-10, ДС-20). Обнаружено, что благодаря процессу солюбилизации происходит образование микрогетерогенных наночастиц, которые приводят к изменению состава газогидратов и скорости образования Ключевые слова: газогидраты метана, мицеллообразование, поверхностное натяжение, межфазный электрический потенциал, скорость образовани

    Peculiarities of geological and thermobaric conditions for the gas hydrate deposits occurence in the Black Sea and the prospects for their development

    Get PDF
    The actuality has been revealed of the necessity to attract the gas hydrate deposits of the Black Sea into industrial development as an alternative to traditional gas fields. This should be preceded by the identification and synthesis of geological and thermobaric peculiarities of their existence. It was noted that the gas hydrates formation occurs under certain thermobaric conditions, with the availability of a gas hydrate-forming agent, which is capable of hydrate formation, as well as a sufficient amount of water necessary to start the crystallization process. The gas hydrate accumulation typically does not occur in free space – in sea water, but in the massif of the sea bed rocks. The important role in the process of natural gas hydrates formation is assigned to thermobaric parameters, as well as to the properties and features of the geological environment, in which, actually, the process of hydrate formation and further hydrate accumulation occurs. It was noted that the source of formation and accumulation of the Black Sea gas hydrates is mainly catagenetic (deep) gas, but diagenetic gas also takes part in the process of gas hydrate deposits formation. The main component of natural gas hydrate deposits is methane and its homologs – ethane, propane, isobutane. The analysis has been made of geological and geophysical data and literature materials devoted to the study of the offshore area and the bottom of the Black Sea, as well as to the identification of gas hydrate deposits. It was established that in the offshore area the gas hydrate deposits with a heterogeneous structure dominate, that is, which comprises a certain proportion of aluminosilicate inclusions. It was noted that the Black Sea bottom sediments, beginning with the depths of 500 – 600 m, are gassy with methane, and a large sea part is favourable for hydrate formation at temperatures of +8...+9ºC and pressures from 7 to 20 MPa at different depths. The characteristics of gas hydrate deposits are provided, as well as requirements and aspects with regard to their industrialization and development. It is recommended to use the method of thermal influence on gas hydrate deposits, since, from an ecological point of view, it is the safest method which does not require additional water resources for its implementation, because water intake is carried out directly from the upper sea layers. A new classification of gas hydrate deposits with a heterogeneous structure has been developed, which is based on the content of rocks inclusions in gas hydrate, the classification feature of which is the amount of heat spent on the dissociation process

    Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea

    Get PDF
    Purpose. Research of thermodynamic and geomechanical processes occurring in a gas hydrate body under the influence of an activating agent (sea water from surface layers) in the conditions of the Black Sea by mathematical modeling using finite element method. Methods. The modeling of thermodynamic and geomechanical processes is performed with the use of ANSYS v17.0 software and in accordance with the climatic, hydrogeological and physic-mechanical properties of the numerical model elements in the Black Sea gas hydrate deposit under consideration, which are similar to natural ones. The thermodynamic processes were studied in the section “Steady-State Thermal”, and the geomechanical (stress-strain state) in “Static Structural”. Findings. The spatial model is developed, which allows to simulate thermodynamic and geomechanical processes in a gas hydrate body under the influence of a thermal agent. As a result of modeling, it was determined that under these conditions the temperature in the gas hydrate body varies with the distance from the production well similarly in both directions according to the polynomial dependence. What is more, at a distance from the well of 18.7 m the temperature is stable and equals +22°С, and in the range of 18.7 – 24.9 m – decreases by 3.1 times and reaches a value of +7°С. It was found out that deformations in a gas hydrate body under the influence of an activating agent, which is fed under pressure above the initial, are directed from the lateral boundaries to the center of the gas hydrate body in the direction of productive dissociation zones. This, in its turn, results in the displacement of the gas hydrate volume to the reaction proceeding center, improving the quality of the decomposition process and allows mining of 87 – 91% gas hydrate volume, which is presented in the model. Originality. For the first time, for the conditions of the Black Sea gas hydrate deposits, an analytical assessment of the dissociation zone distribution from the production well under the influence of the thermal agent and the changes of the stress-strain state of the gas hydrated body during its decomposition, has been carried out. This allows to improve the technology of the gas hydrate deposits development in the conditions under consideration. Practical implications. The technological scheme for the development of a gas hydrate body based on the combined approach to the effects of activators (temperature and pressure) is proposed, which eliminates the need to warm the boundary sections of the deposit and increases the amount of the supplied activating agent and its temperatures, which in its turn leads to a decrease in the resource and energy consumption.Мета. Дослідження термодинамічних і геомеханічних процесів, що протікають у газогідратному тілі при впливі активуючого агента (морської води з поверхневих шарів) в умовах Чорного моря шляхом математичного моделювання методом кінцевих елементів. Методика. Моделювання термодинамічних і геомеханічних процесів виконано за допомогою програмного забезпечення ANSYS v17.0 з відповідністю кліматичних, гідрогеологічних та фізико-механічних властивостей елементів чисельної моделі у розглянутому газогідратному родовищі Чорного моря, які є аналогічними натурним. Термодинамічні процеси досліджувалися у розділі програми “Steady-State Thermal”, а геомеханічні (напружено-деформований стан) – в “Static Structural”. Результати. Розроблена просторова модель, що дозволяє моделювати термодинамічні та геомеханічні процеси у газогідратному тілі при впливі теплового агента. В результаті моделювання встановлено, що у розглянутих умовах температура в газогідратному тілі змінюється з відстанню від видобувної свердловини аналогічно в обидві сторони за поліноміальною залежністю, причому на відстані від свердловини 18.7 м температура стабільна і становить +22°С, а в інтервалі 18.7 – 24.9 м – знижується у 3.1 рази і досягає значення +7°С. Виявлено, що деформації у газогідратному тілі при впливі активуючого агента, який подається під тиском, що перевищує початковий, спрямовані від бокових меж у центр газогідратного тіла у напрямі продуктивних зон дисоціації, що, в свою чергу, призводить до зміщення об’єму газогідрату в центр протікання реакції, покращуючи якість процесу розкладання і дозволяючи відпрацювати 87 – 91% об’єму газогідрата, представленого в моделі. Наукова новизна. Вперше для умов газогідратних родовищ Чорного моря проведена аналітична оцінка характеру поширення зони дисоціації від видобувної свердловини при впливі теплового агента та змін напружено-деформованого стану газогідратного тіла при його розкладанні, що дозволяє удосконалити технологію розробки газогідратних покладів у розглянутих умовах. Практична значимість. Запропоновано технологічну схему розробки газогідратного тіла на основі комбінованого підходу до впливу активаторами (температурою та тиском), що усуває необхідність прогріву граничних ділянок покладу і збільшення кількості активуючого агента, що подається, та його температури, що, в свою чергу, веде до зниження ресурсо- й енерговитрат.Цель. Исследование термодинамических и геомеханических процессов, протекающих в газогидратном теле при воздействии активирующего агента (морской воды с поверхностных слоев) в условиях Черного моря посредством математического моделирования методом конечных элементов. Методика. Моделирование термодинамических и геомеханических процессов выполнено при помощи программного обеспечения ANSYS v17.0 с соответствием климатических, гидрогеологических и физико-механических свойств элементов численной модели в рассматриваемом газогидратном месторождении Черного моря, которые являются аналогичными натурным. Термодинамические процессы исследовались в разделе программы “Steady-State Thermal”, а геомеханические (напряженно-деформированное состояние) – в “Static Structural”. Результаты. Разработана пространственная модель, позволяющая моделировать термодинамические и геомеханические процессы в газогидратном теле при воздействии теплового агента. В результате моделирования установлено, что в рассматриваемых условиях температура в газогидратном теле изменяется с расстоянием от добывающей скважины аналогично в обе стороны по полиномиальной зависимости, причем на расстоянии от скважины 18.7 м температура стабильна и составляет +22°С, а в интервале 18.7 – 24.9 м – снижается в 3.1 раза и достигает значения +7°С. Выявлено, что деформации в газогидратном теле при воздействии активирующего агента, подаваемого под давлением, превышающее начальное, направлены от боковых границ в центр газогидратного тела в направлении продуктивных зон диссоциации, что, в свою очередь, приводит к смещению объема газогидрата в центр протекания реакции, улучшая качество процесса разложения и позволяя отработать 87 – 91% объема газогидрата, представленного в модели. Научная новизна. Впервые для условий газогидратных месторождений Черного моря проведена аналитическая оценка характера распространения зоны диссоциации от добывающей скважины при воздействии теплового агента и изменений напряженно-деформированного состояния газогидратного тела при его разложении, что позволяет усовершенствовать технологию разработки газогидратных залежей в рассматриваемых условиях. Практическая значимость. Предложена технологическая схема разработки газогидратного тела на основании комбинированного подхода к воздействию активаторами (температурой и давлением), устраняющая необходимость прогрева граничных участков залежи и увеличения подаваемого количества активирующего агента и его температуры, что, в свою очередь, ведет к снижению ресурсо- и энергозатрат.The results of the current researches were obtained within the framework of the research works of GP-473 Development of scientific principles of phase transformations of technogenic and natural gas hydrates and creation of the newest technologies of their extraction” (State Registration No.0115U002294) and GP-487 “Scientific substantiation and development of energy saving and low waste technologies of hydrocarbon and mineral raw materials extraction” (State Registration No.0116U008041)

    Effect of mechanoactivated chemical additives on the process of gas hydrate formation

    Get PDF
    This study addresses the production of gas hydrate of methane with a high gas-hydrate-forming content in a solid phase in the isolated system at T=274 K and pressure of 5 MPa and presence of mechanically activated rocks close to the bottom of the chamber. We used mechanically activated samples of various degrees of grinding to increase an area of contact surface of heterogeneous phases. We carried out mechanochemical activation of materials in a vertical vibrating mill (VVM). In the study, we found out that formation of gas hydrates on activated aluminosilicates leads to the cryochemical synthesis of hydrocarbons, due to formation of additional reaction centers formed upon activation. This indicates a change in the mechanism of formation of GH during the process. We calculated three rate constants for the formation of GH of methane, which vary from 1.20×10-2 to 1.25×10-2 hour-1, based on semi-logarithmic anamorphosis. The study showed that formation of methane gas hydrates in presence of activated additives leads to formation of up to 5−6 % of ethane. Chromatographic method confirmed this. This indicates possibility of carrying out a low-temperature synthesis of higher hydrocarbons in the artificial production of GH, in contrast to the known mechanochemical transformations during the process of obtaining gas from gas hydrates.Досліджено вплив механохімічно активованих домішок на процес утворення газових гідратів метану. Встановлено, що процес утворення газогідратів метану у присутності активованих алюмосилікатів відбувається не по автокаталітичному характеру. Виявлено, що у складі газового гідрату метану з’являється етан. Визначено константи швидкості утворення газогідратів метану при Т=274 K і тиску 5 МПа у присутності механоактивованих домішокИсследовано влияние механохимически активированных добавок на процесс образования газовых гидратов метана. Установлено, что процесс образования газогидратов метана в присутствии активированных алюмосиликатов происходит не по автокаталитическому характеру. Обнаружено, что в составе газового гидрата метана появляется этан. Определены константы скорости образования газогидрата метана при Т=274 K и давлении 5 МПа в присутствии механоактивированных добаво

    One-rank interaction kernel of the two-nucleon system for medium and high energies

    Full text link
    A new version of the separable kernel of the nucleon-nucleon interaction in the Bethe-Salpeter approach is presented. The phase shifts are fitted to recent experimental data for singlet and uncoupled triplet partial waves of the neutron-proton scattering with total angular momenta J=0,1. The results are compared with other model calculations.Comment: 10 pages, 5 figures, 3 table

    Blockchain technologies in healthcare institutions : focus on security and effective cooperation with the government

    Get PDF
    Purpose: This article considers the relevance of healthcare modernization processes in Russia in terms of marketing activities activation, public-private partnerships intensification. Design/Methodology/Approach: The problem of ensuring security when government and healthcare institutions interact by means of blockchain technologies is under-explored and requires further research and investigation. Therefore, methods of induction, deduction, problem, system and logical analysis along with the economic process and system modelling method combined with the formalization method are used in this article. Findings: A mechanism for effective ensuring the safety of interaction between the government and healthcare institutions using blockchain technologies in the course of conducting financial flows and operational information exchange in modern Russia is proposed. Practical Implications: The proposed mechanism for effective ensuring of security in terms of interaction between the government and the healthcare institution by means of blockchain technologies in modern Russia effectively ensures the security of interaction between the government and healthcare institutions . Originality/Value: Authors’ findings could be introduced into the healthcare industry.peer-reviewe
    corecore