73 research outputs found

    Role of the K1K_1 meson in K0K^0 photoproduction off the deuteron

    Full text link
    Neutral kaon photoproduction off the nucleon and deuteron has been reinvestigated by utilizing the new experimental data on both targets. An isobar model for elementary operator and impulse approximation for the reaction on the deuteron have been used. The available free parameters in the elementary model have been extracted from both elementary and deuteron data. In contrast to the elementary reaction, fitting the deuteron data requires an inclusion of weighting factor. The result indicates that the angular distribution of the elementary K0ΛK^0\Lambda process does not show backward peaking behavior.Comment: 4 pages, 4 figures, prepared for the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Seoul, Korea, August 22-26, 201

    Pseudoscalar meson photoproduction: from known to undiscovered resonances

    Get PDF
    The role of dynamics in spin observables for pseudoscalar meson photoproduction is investigated using a density matrix approach in a multipole truncated framework. Extraction of novel rules for γpπ+n, K+Λ\gamma p \rightarrow \pi^+ n,~ K^+ \Lambda and ηp\eta p reactions based on resonance dominance, and on other broad and reasonable dynamical assumptions, are discussed. Observables that are particularly sensitive to missing nucleonic resonances predicted by quark-based approaches, are singled out.Comment: 22 pages, latex, 3 figure

    The Kaon-Photoproduction Of Nucleons In The Quark Model

    Full text link
    In this paper, we develop a general framework to study the meson-photoproductions of nucleons in the chiral quark model. The S and U channel resonance contributions are expressed in terms of the Chew-Goldberger-Low-Nambu (CGLN) amplitudes. The kaon-photoproduction processes, γpK+Λ\gamma p\to K^+ \Lambda, γpK+Σ0\gamma p\to K^+ \Sigma^0, and γpK0Σ+\gamma p\to K^0\Sigma^+, are calculated. The initial results show that the quark model provides a much improved description of the reaction mechanism for the kaon-photoproductions of the nucleon with less parameters than the traditional phenomenological approaches.Comment: 25 pages, 9 postscript figures can be obtained from the author

    Multiple var2csa-Type PfEMP1 Genes Located at Different Chromosomal Loci Occur in Many Plasmodium falciparum Isolates

    Get PDF
    BACKGROUND:The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (approximately 26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. CONCLUSIONS/SIGNIFICANCE:Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria

    BibGlimpse: The case for a light-weight reprint manager in distributed literature research

    Get PDF
    Background While text-mining and distributed annotation systems both aim at capturing knowledge and presenting it in a standardized form, there have been few attempts to investigate potential synergies between these two fields. For instance, distributed annotation would be very well suited for providing topic focussed, expert knowledge enriched text corpora. A key limitation for this approach is the availability of literature annotation systems that can be routinely used by groups of collaborating researchers on a day to day basis, not distracting from the main focus of their work. Results For this purpose, we have designed BibGlimpse. Features like drop-to-file, SVM based automated retrieval of PubMed bibliography for PDF reprints, and annotation support make BibGlimpse an efficient, light-weight reprint manager that facilitates distributed literature research for work groups. Building on an established open search engine, full-text search and structured queries are supported, while at the same time making shared collections of annotated reprints accessible to literature classification and text-mining tools. Conclusion BibGlimpse offers scientists a tool that enhances their own literature management. Moreover, it may be used to create content enriched, annotated text corpora for research in text-mining

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    A predicted operon map for Mycobacterium tuberculosis

    Get PDF
    The prediction of operons in Mycobacterium tuberculosis (MTB) is a first step toward understanding the regulatory network of this pathogen. Here we apply a statistical model using logistic regression to predict operons in MTB. As predictors, our model incorporates intergenic distance and the correlation of gene expression calculated for adjacent gene pairs from over 474 microarray experiments with MTB RNA. We validate our findings with known examples from the literature and experimentation. From this model, we rank each potential operon pair by the strength of evidence for cotranscription, choose a classification threshold with a true positive rate of over 90% at a false positive rate of 9.1%, and use it to construct an operon map for the MTB genome

    Structure and dynamics of the operon map of Buchnera aphidicola sp. strain APS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression regulation is still poorly documented in bacteria with highly reduced genomes. Understanding the evolution and mechanisms underlying the regulation of gene transcription in <it>Buchnera aphidicola</it>, the primary endosymbiont of aphids, is expected both to enhance our understanding of this nutritionally based association and to provide an intriguing case-study of the evolution of gene expression regulation in a reduced bacterial genome.</p> <p>Results</p> <p>A Bayesian predictor was defined to infer the <it>B. aphidicola </it>transcription units, which were further validated using transcriptomic data and RT-PCR experiments. The characteristics of <it>B. aphidicola </it>predicted transcription units (TUs) were analyzed in order to evaluate the impact of operon map organization on the regulation of gene transcription.</p> <p>On average, <it>B. aphidicola </it>TUs contain more genes than those of <it>E. coli</it>. The global layout of <it>B. aphidicola </it>operon map was mainly shaped by the big reduction and the rearrangements events, which occurred at the early stage of the symbiosis. Our analysis suggests that this operon map may evolve further only by small reorganizations around the frontiers of <it>B. aphidicola </it>TUs, through promoter and/or terminator sequence modifications and/or by pseudogenization events. We also found that the need for specific transcription regulation exerts some pressure on gene conservation, but not on gene assembling in the operon map in <it>Buchnera</it>. Our analysis of the TUs spacing pointed out that a selection pressure is maintained on the length of the intergenic regions between divergent adjacent gene pairs.</p> <p>Conclusions</p> <p><it>B. aphidicola </it>can seemingly only evolve towards a more polycistronic operon map. This implies that gene transcription regulation is probably subject to weak selection pressure in <it>Buchnera </it>conserving operons composed of genes with unrelated functions.</p

    Antibodies to a Full-Length VAR2CSA Immunogen Are Broadly Strain-Transcendent but Do Not Cross-Inhibit Different Placental-Type Parasite Isolates

    Get PDF
    The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species

    Deciphering the Code for Retroviral Integration Target Site Selection

    Get PDF
    Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses
    corecore