2,757 research outputs found
Monitoring Spacecraft Telemetry Via Optical or RF Link
A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints
Factors Related to Marketing Successes for Fibre Producers in Middle Asia
Following the collapse of the Soviet Union in the early 1990s, the economic well-being of livestock producers of Kazakhstan and Kyrgyzstan declined dramatically (see Kerven 2003; Kerven et al., 2003). Like the economies in general, the livestock economies are slowly recovering and restructuring. Livestock producers have been encouraged by international market prices to raise sheep, goats, camels, and animals producing specialty fibre. Fine-fibre sheep and goats remain in Kazakhstan and Kyrgyzstan, but marketing of fibres from the region is not ideal. As examples, sheep pelts are not sorted and graded, which is expected by international buyers, and cashmere is shorn and sold in bulk. Lastly, marketing opportunities are limited, technology, transportation infrastructure, and market information is lacking, and the bargaining power of individual fibre producers is weak. Under support from the U.S. AID Global Livestock-Collaborative Research Support Program (GL-CRSP) project, Developing institutions and capacity for sheep and fibre marketing in Central Asia, we seek to understand the spatial relationships that can help determine success in fibre marketing
Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years
Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile
Galaxy Merger Candidates in High-Redshift Cluster Environments
We compile a sample of spectroscopically- and photometrically-selected
cluster galaxies from four high-redshift galaxy clusters ()
from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a
comparison field sample selected from the UKIDSS Deep Survey. Using
near-infrared imaging from the \textit{Hubble Space Telescope} we classify
potential mergers involving massive () cluster members by eye, based on morphological
properties such as tidal distortions, double nuclei, and projected near
neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32
photometric massive cluster members across the four clusters and 65
spectroscopic and 26 photometric comparable field galaxies, we find that after
taking into account contamination from interlopers, of
the cluster members are involved in potential mergers, compared to
of the field galaxies. We see no evidence of merger
enhancement in the central cluster environment with respect to the field,
suggesting that galaxy-galaxy merging is not a stronger source of galaxy
evolution in cluster environments compared to the field at these redshifts.Comment: Accepted by Ap
Derivation of tropospheric methane from TCCON CH₄ and HF total column observations
The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere
Climate Change Impacts on Livestock
This Working Paper summarizes projected climate change impacts on livestock across
Africa, using a combination of literature review and some new results on the projected
impacts of climate change on the rangelands of Africa. Findings show that there are
many options that can help livestock keepers adapt, but there appear to be no options
that are widely applicable which do not have constraints to their adoption. An
enabling technical and policy environment will thus be needed to ensure livestock
keepers can adapt to climate change and enhance their livelihoods and food security
ALMA Observations of Gas-Rich Galaxies in z~1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-Density Environments
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6,
constituting the largest sample of molecular gas measurements in z>1.5 clusters
to date. The observations span three galaxy clusters, derived from the Spitzer
Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma
detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar
masses and infrared-derived star formation rates, to place some of the first
constraints on molecular gas properties in z~1.6 cluster environments. We
measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects,
with high gas fractions and long depletion timescales, averaging 62% and 1.4
Gyr, respectively. We compare our cluster galaxies to the scaling relations of
the coeval field, in the context of how gas fractions and depletion timescales
vary with respect to the star-forming main sequence. We find that our cluster
galaxies lie systematically off the field scaling relations at z=1.6 toward
enhanced gas fractions, at a level of ~4sigma, but have consistent depletion
timescales. Exploiting CO detections in lower-redshift clusters from the
literature, we investigate the evolution of the gas fraction in cluster
galaxies, finding it to mimic the strong rise with redshift in the field. We
emphasize the utility of detecting abundant gas-rich galaxies in high-redshift
clusters, deeming them as crucial laboratories for future statistical studies.Comment: 8 pages, 3 figures, published in ApJ Letters; updated to match
published versio
Understanding Consumer Enchantment via Paranormal Tourism: Part I—Conceptual Review
© The Author(s) 2020. Tourism-hospitality businesses sometimes market consumer experiences in terms of “enchantment,” although this phrase is often used vaguely or variously. Therefore, we approached the issue conceptually by examining prior research on the experience economy, extraordinary architectural experiences, and accounts of paranormal tourism. Our critical overview suggests that we are dealing with a phenomenon rooted in environment-person bidirectional (or enactive) effects. We subsequently argue for the term “situational-enchantment” to denote a distinct and progressive arousal state characterized by dis-ease or dissonance that facilitates a sense of connection or oneness with a “transcendent agency, ultimate reality, or Other.” An iterative Content Category Dictionary exercise based on target literature specifically mapped this hypothesized state in terms of five competing features: (a) Emotional, (b) Sensorial, (c) Timeless, (d) Rational, and (e) Transformative. We frame this phenomenology within Funder’s Realistic Accuracy Model, which we propose drives an epiphanic process involving attentional, perceptual, attributional, and social mechanisms. Our synthesis of the multidisciplinary literature in this domain helps to clarify the nature and relevance of enchantment as an individual difference that varies across people and is subject to a variety of contextual influences. Accordingly, we discuss how this hypothesized state can be manipulated to an extent within certain people by creating or reinforcing conditions that spur experiential and rational engagement with ambiguous or unexpected stimuli
Risk of Climate-Related Impacts on Global Rangelands – A Review and Modelling Study
Climate change threatens the ability of global rangelands to provide food, support livelihoods and deliver important ecosystems services. The extent and magnitude of potential impacts are however poorly understood. In this study, we review the risk of climate impacts along the rangeland systems food supply chain. We also present results from biophysical modelling simulations and spatial data analyses to identify where and to what extent rangelands may be at climatic risk. Although a quantification of the net impacts of climate change on rangeland production systems is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from feed and animal production to processing, storage, transport, retailing and human consumption. Regarding grazing biomass production, this study finds that mean herbaceous biomass is projected to decrease across global rangelands between 2000 and 2050 under RCP 8.5 (-4.7%), while inter- (year-to-year) and intra- (month-to-month) annual variabilities are projected to increase (+21.3% and +8.2%, respectively). These averaged global estimates mask large spatial heterogeneities, with 74% of global rangeland area projected to experience a decline in mean biomass, 64% an increase in inter-annual variability and 54% an increase in intra-annual variability. The potentially most damaging vegetation trends for livestock production (i.e., simultaneous decreases in mean biomass and increases in inter-annual variability) are projected to occur in rangeland communities that are currently the most vulnerable (here, with the lowest livestock productivities and economic development levels and with the highest projected increases in human population densities). Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to build on robust methods of designing, implementing and evaluating detailed development pathways, and account for a wide range of possible futures
Improving Cosmological Distance Measurements Using Twin Type Ia Supernovae
We introduce a method for identifying "twin" Type Ia supernovae, and using
them to improve distance measurements. This novel approach to Type Ia supernova
standardization is made possible by spectrophotometric time series observations
from the Nearby Supernova Factory (SNfactory). We begin with a well-measured
set of supernovae, find pairs whose spectra match well across the entire
optical window, and then test whether this leads to a smaller dispersion in
their absolute brightnesses. This analysis is completed in a blinded fashion,
ensuring that decisions made in implementing the method do not inadvertently
bias the result. We find that pairs of supernovae with more closely matched
spectra indeed have reduced brightness dispersion. We are able to standardize
this initial set of SNfactory supernovae to 0.083 +/- 0.012 magnitudes,
implying a dispersion of 0.072 +/- 0.010 magnitudes in the absence of peculiar
velocities. We estimate that with larger numbers of comparison SNe, e.g, using
the final SNfactory spectrophotometric dataset as a reference, this method will
be capable of standardizing high-redshift supernovae to within 0.06-0.07
magnitudes. These results imply that at least 3/4 of the variance in Hubble
residuals in current supernova cosmology analyses is due to previously
unaccounted-for astrophysical differences among the supernovaeComment: 37 pages, 9 figures, 5 tables. Accepted for publication in ApJ. Fixed
typo in arXiv abstrac
- …