170 research outputs found
Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses
Exit times for stochastic Ginzburg-Landau classical field theories with two
or more coupled classical fields depend on the interval length on which the
fields are defined, the potential in which the fields deterministically evolve,
and the relative stiffness of the fields themselves. The latter is of
particular importance in that physical applications will generally require
different relative stiffnesses, but the effect of varying field stiffnesses has
not heretofore been studied. In this paper, we explore the complete phase
diagram of escape times as they depend on the various problem parameters. In
addition to finding a transition in escape rates as the relative stiffness
varies, we also observe a critical slowing down of the string method algorithm
as criticality is approached.Comment: 16 pages, 10 figure
Stability of Metal Nanowires at Ultrahigh Current Densities
We develop a generalized grand canonical potential for the ballistic
nonequilibrium electron distribution in a metal nanowire with a finite applied
bias voltage. Coulomb interactions are treated in the self-consistent Hartree
approximation, in order to ensure gauge invariance. Using this formalism, we
investigate the stability and cohesive properties of metallic nanocylinders at
ultrahigh current densities. A linear stability analysis shows that metal
nanowires with certain {\em magic conductance values} can support current
densities up to 10^11 A/cm^2, which would vaporize a macroscopic piece of
metal. This finding is consistent with experimental studies of gold nanowires.
Interestingly, our analysis also reveals the existence of reentrant stability
zones--geometries that are stable only under an applied bias.Comment: 12 pages, 6 figures, version published in PR
The Order of Phase Transitions in Barrier Crossing
A spatially extended classical system with metastable states subject to weak
spatiotemporal noise can exhibit a transition in its activation behavior when
one or more external parameters are varied. Depending on the potential, the
transition can be first or second-order, but there exists no systematic theory
of the relation between the order of the transition and the shape of the
potential barrier. In this paper, we address that question in detail for a
general class of systems whose order parameter is describable by a classical
field that can vary both in space and time, and whose zero-noise dynamics are
governed by a smooth polynomial potential. We show that a quartic potential
barrier can only have second-order transitions, confirming an earlier
conjecture [1]. We then derive, through a combination of analytical and
numerical arguments, both necessary conditions and sufficient conditions to
have a first-order vs. a second-order transition in noise-induced activation
behavior, for a large class of systems with smooth polynomial potentials of
arbitrary order. We find in particular that the order of the transition is
especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version
accepted for publication by Phys. Rev.
Strategic emergency department design: An approach to capacity planning in healthcare provision in overcrowded emergency rooms
Healthcare professionals and the public have increasing concerns about the ability of emergency departments to meet current demands. Increased demand for emergency services, mainly caused by a growing number of minor and moderate injuries has reached crisis proportions, especially in the United Kingdom. Numerous efforts have been made to explore the complex causes because it is becoming more and more important to provide adequate healthcare within tight budgets. Optimisation of patient pathways in the emergency department is therefore an important factor
The number of transmission channels through a single-molecule junction
We calculate transmission eigenvalue distributions for Pt-benzene-Pt and
Pt-butadiene-Pt junctions using realistic state-of-the-art many-body
techniques. An effective field theory of interacting -electrons is used to
include screening and van der Waals interactions with the metal electrodes. We
find that the number of dominant transmission channels in a molecular junction
is equal to the degeneracy of the molecular orbital closest to the metal Fermi
level.Comment: 9 pages, 8 figure
Relatives from Hereditary Breast and Ovarian Cancer and Lynch Syndrome Families Forgoing Genetic Testing: Findings from the Swiss CASCADE Cohort.
Cascade genetic testing of relatives from families with pathogenic variants associated with hereditary breast and ovarian cancer (HBOC) or Lynch syndrome (LS) has important implications for cancer prevention. We compared the characteristics of relatives from HBOC or LS families who did not have genetic testing (GT (-) group) with those who had genetic testing (GT (+) group), regardless of the outcome. Self-administered surveys collected cross-sectional data between September 2017 and December 2021 from relatives participating in the CASCADE cohort. We used multivariable logistic regression with LASSO variable selection. Among n = 115 relatives who completed the baseline survey, 38% (n = 44) were in the GT (-) group. Being male (OR: 2.79, 95% CI: 1.10-7.10) and without a previous cancer diagnosis (OR: 4.47, 95% CI: 1.03-19.42) increased the odds of being untested by almost three times. Individuals from families with fewer tested relatives had 29% higher odds of being untested (OR: 0.71, 95% CI: 0.55-0.92). Reasons for forgoing cascade testing were: lack of provider recommendation, lack of time and interest in testing, being afraid of discrimination, and high out-of-pocket costs. Multilevel interventions designed to increase awareness about clinical implications of HBOC and LS in males, referrals from non-specialists, and support for testing multiple family members could improve the uptake of cascade testing
Intention to Inform Relatives, Rates of Cascade Testing, and Preference for Patient-Mediated Communication in Families Concerned with Hereditary Breast and Ovarian Cancer and Lynch Syndrome: The Swiss CASCADE Cohort.
Cascade screening for Tier 1 cancer genetic conditions is a significant public health intervention because it identifies untested relatives of individuals known to carry pathogenic variants associated with hereditary breast and ovarian cancer (HBOC) and Lynch syndrome (LS). The Swiss CASCADE is a family-based, open-ended cohort, including carriers of HBOC- and LS-associated pathogenic variants and their relatives. This paper describes rates of cascade screening in relatives from HBOC- and LS- harboring families, examines carriers' preferences for communication of testing results, and describes theory-based predictors of intention to invite relatives to a cascade screening program. Information has been provided by 304 index cases and 115 relatives recruited from September 2017 to December 2021. On average, 10 relatives per index case were potentially eligible for cascade screening. Approximately 65% of respondents wanted to invite relatives to the cohort, and approximately 50% indicated a preference for patient-mediated communication of testing results, possibly with the assistance of digital technology. Intention to invite relatives was higher for first- compared to second- and third-degree relatives, but was not different between syndromes or based on relatives' gender. The family environment and carrying pathogenic variants predicts intention to invite relatives. Information helps optimize delivery of tailored genetic services
Expected accuracy of tilt measurements on a novel hexapod-based Digital zenith camera system: A Monte-Carlo simulation study
Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation.As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt must be corrected. Examples include electronic theodolites or total stations, gravity meters, and other hexapod-based telescopes
Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, FĂsicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de AgronomĂa. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Bena, MarĂa Julia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, FĂsicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy BĂĽrki, Ana Carolina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, FĂsicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Santa Fe. Instituto de AgrobiotecnologĂa del Litoral. Universidad Nacional del Litoral. Instituto de AgrobiotecnologĂa del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, FĂsicas y Naturales. Instituto de Botánica Darwinion; Argentin
- …