11 research outputs found

    SARS-CoV-2 detection among international air travellers to Ghana during mandatory quarantine

    Get PDF
    Objectives: To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine.Design: A retrospective cross-sectional study.Setting: Air travellers to Ghana on 21st and 22nd March 2020.Participants: On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study.Main outcome measure: Positivity for SARS-CoV-2 by polymerase chain reaction.Results: The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV-2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive.Conclusions: Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Antibiotic resistance and mecA characterization of Staphylococcus hominis from filarial lymphedema patients in the Ahanta West District, Ghana: A cross‐sectional study

    No full text
    Abstract Background and Aim Filarial infections affect over 150 million people in the tropics. One of the major forms of filarial pathologies is lymphedema; a condition where the immune response is significantly altered, resulting in changes in the normal flora. Staphylococcus hominis, a human skin commensal, can also be pathogenic in immunocompromised individuals. Therefore, there is the possibility that S. hominis could assume a different behavior in filarial lymphedema patients. To this end, we investigated the levels of antibiotic resistance and extent of mecA gene carriage in S. hominis among individuals presenting with filarial lymphedema in rural Ghana. Method We recruited 160 individuals with stages I–VII lymphedema, in a cross‐sectional study in the Ahanta West District of the Western Region of Ghana. Swabs from lymphedematous limb ulcers, pus, and cutaneous surfaces were cultured using standard culture‐based techniques. The culture isolates were subjected to Matrix‐Assisted Laser Desorption/Ionization Time of Flight (MALDI‐TOF) mass spectrometry for bacterial identification. Antimicrobial susceptibility testing (AST) was performed using the Kirby–Bauer method. mecA genes were targeted by polymerase chain reaction for strains that were cefoxitin resistant. Results In all, 112 S. hominis were isolated. The AST results showed resistance to chloramphenicol (87.5%), tetracycline (83.3%), penicillin (79.2%), and trimethoprim/sulphamethoxazole (45.8%). Of the 112 strains of S. hominis, 51 (45.5%) were resistant to cefoxitin, and 37 (72.5%) of the cefoxitin‐resistant S. hominis haboured the mecA gene. Conclusion This study indicates a heightened level of methicillin‐resistant S. hominis isolated among filarial lymphedema patients. As a result, opportunistic infections of S. hominis among the already burdened filarial lymphedema patients in rural Ghana may have reduced treatment success with antibiotics

    Persistent 'hotspots' of lymphatic filariasis microfilaraemia despite 14 years of mass drug administration in Ghana.

    No full text
    Among the 216 districts in Ghana, 98 were declared endemic for lymphatic filariasis in 1999 after mapping. Pursuing the goal of elimination, WHO recommends annual treatment using mass drugs administration (MDA) for at least 5 years. MDA was started in the country in 2001 and reached national coverage in 2006. By 2014, 69 districts had 'stopped-MDA' (after passing the transmission assessment survey) while 29 others remained with persistent microfilaraemia (mf) prevalence (≄1%) despite more than 11 years of MDA and were classified as 'hotspots'. An ecological study was carried out to compare baseline mf prevalence and anti-microfilaria interventions between hotspot and stopped-MDA districts. Baseline mf prevalence was significantly higher in hotspots than stopped-MDA districts (p<0.001). After three years of MDA, there was a significant decrease in mf prevalence in hotspot districts, but it was still higher than in stopped-MDA districts. The number of MDA rounds was slightly higher in hotspot districts (p<0.001), but there were no differences in coverage of MDA or long-lasting-insecticide-treated nets. The main difference in hotspots and stopped-MDA districts was a high baseline mf prevalence. This finding indicates that the recommended 5-6 rounds annual treatment may not achieve interruption of transmission
    corecore