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Pathwise McKean–Vlasov theory with additive noise
Michele Coghi, Jean-Dominique Deuschel, Peter K. Friz, Mario Maurelli

Abstract

We take a pathwise approach to classical McKean-Vlasov stochastic differential equa-
tions with additive noise, as e.g. exposed in Sznitmann [34]. Our study was prompted by
some concrete problems in battery modelling [19], and also by recent progrss on rough-
pathwise McKean-Vlasov theory, notably Cass–Lyons [9], and then Bailleul, Catellier and
Delarue [4]. Such a “pathwise McKean-Vlasov theory” can be traced back to Tanaka [36].
This paper can be seen as an attempt to advertize the ideas, power and simplicity of the
pathwise appproach, not so easily extracted from [4, 9, 36]. As novel applications we dis-
cuss mean field convergence without a priori independence and exchangeability assump-
tion; common noise and reflecting boundaries. Last not least, we generalize Dawson–
Gärtner large deviations to a non-Brownian noise setting.

1 Introduction

We consider the following generalized McKean-Vlasov stochastic differential equation (SDE) on
a probability space (Ω,A,P),{

dXt = b(t,Xt,L(Xt))dt+ dWt

X0 = ζ.
(1)

The input data to the problem is the random variable

(ζ,W ) : Ω → Rd × CT ,

and
X : Ω→ CT := C([0, T ],Rd)

is the solution (process). We denote by L(Y ) the law of a random variable Y . Classically, one
takes W as a Brownian Motion. For us, it will be crucial to avoid any a priori specification of the
noise. Indeed, we are not even asking for any filtration on the space Ω and equation (1) will be
studied pathwise. For a p ∈ [1,∞), let Pp(Rd) be the space of probability measures on Rd

with finite p-moment endowed with the p-Wasserstein metric. The drift is a function

b : [0, T ]× Rd × Pp(Rd)→ Rd,

which is assumed uniformly Lipschitz continuous in the last two variables, cf. Assumption 1
below.

In a nutshell, McKean-Vlasov equations are SDEs which depend on the law of the solution.
They have been extensively studied in the literature, for a comprehensive introduction we refer
to [34]. They arise in many applications as limit of systems of interacting particles, for instance
in the theory of mean field games developed by Lasry and Lions [23–25]. Other interesting
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applications arise in fluid-dynamics [5, 17, 28], also with common noise features, and neuro-
science [13, 27, 37] and macroeconomics [29], also involving general driving signals. Last not
least, our motivation, also with regard to reflecting boundary conditions (a feature out of reach
of present rough path machinery), comes from battery modelling [19].

Closely related to the McKean-Vlasov equation is the system of particles (classically) driven by
independent Brownian motions W i, with independent identically distributed (i.i.d.) initial condi-
tions ζ i, {

dX i,N
t = b(t,X i,N

t , LN(X
(N)
t ))dt+ dW i

t

X i,N
0 = ζ i,

i = 1, . . . , N. (2)

The particles interact with each other through the empirical measure, which is defined as follows.
Given a space E (such as Rd or CT ) and a vector x(N) = (x1, . . . , xN) ∈ EN , we call P(E)
the space of probability measures over E and we define

LN(x(N)) :=
1

N

N∑
i=1

δxi ∈ P(E).

Let X be a process solution to Equation (1) with inputs (ζ,W ) distributed as (ζ1,W 1). When
the number of particles, N , grows to infinity, we have the following a.s. convergence in P(CT )
equipped with the usual weak-∗ topology,

LN(X(N)(ω))
∗
⇀ L(X), for P− a.e. ω. (3)

This result, as well as the well-posedness of equation (1) is proved in [34] when the particles are
exchangeable and subjects to independent inputs. This approach can be generalized to more
general diffusion coefficients [21,22] using standard semi-martingale theory.

Cass and Lyons [9] studied McKean-Vlasov equations in the framework of rough paths. Thanks
to rough-path theory they can study (rough) pathwise solutions to the McKean-Vlasov equation
and this lets them go beyond the classical case when W is a semi-martingale under P. They
could treat the case when in equation (1) a diffusivity coefficient σ appears in front of the noise.
More precisely, they treated the case when the dependence of b in the measure is linear and the
diffusivity σ is independent from the law. This problem was revisited by Bailleul [3] in the case of
a Lipschitz dependence of b on the measure. Finally, Bailleul et al. [4] studied the general case
for both the drift and the diffusivity Lipschitz dependent on the law of the solution.

At least in the context of battery modelling with additive noise [19], no rough path machinery
should be necessary, leave alone some formidable difficulties for rough differential equations
to deal with reflecting boundaries [1, 15]. This was the initial motivation for our pathwise study,
which soon turned out informative and rather pleasing in the generality displayed here. As our
work neared completion we realized that we were not the first to go in this direction: the basic
idea can be found (somewhat hidden) in a paper by Tanaka, [36, Sec.2]. (There is no shortage
of citations to [36], but we are unaware of any particular work that makes use of the, for us,
crucial Section 2 in that paper.) May that be as it is, advertising this aspect of Tanaka’s work, as
pathwise ancestor to [3,4,9], is another goal of this note, and in any case there is no significant
overlap of our results with [36].

The main intuition in [36] and subsequent works is that equation (2) can be interpreted as
equation (1) by using a transformation of the probability space and the input data. We explain
this connection between the equations in Section 3.1. This approach makes it possible to reduce
the study of the mean field limit to a stability result for equation (1). This implies in particular that
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Pathwise McKean–Vlasov theory 3

there is no need for asymptotical independence or exchangeability of the particles in order to
obtain convergence (3). Indeed, one can show that the solution map

L(ζ,W ) 7→ L(X)

that associates the law of the solution to the law of the inputs is continuous, and as soon as
there is convergence for the law of the input data there is also convergence for the law of the
solution. No independence, nor identical distributions (or even exchangeability) for the inputs
are required, as we explain in Sections 3.1 and 3.3.

Main ideas

Given a Polish space E, we work on the space of probability measures with finite p-th moment,
Pp(E), endowed with the Wasserstein distanceWp (see Section 1.1 for the precise definition).
The idea is to construct the solution map of equation (1), for a generic probability measure µ,

Φ : Pp(Rd × CT )× Pp(CT )→ Pp(CT ), (L(ζ,W ), µ) 7→ L(Xµ). (4)

Here Xµ is the pathwise solution to equation (1) when the inputs are ζ,W and the measure in
the drift is given as µ, instead of the law of X . Existence and uniqueness of the solutions of the
McKean-Vlasov equation (1) follow as a fixed point argument of the parameter dependent map
Φ. Indeed, one can prove that, for fixed (ζ,W ), the map Φ(L(ζ,W ), ·) is a contraction on the
space Pp(CT ). Hence, there is a unique fixed point µ̄ := µ̄(L(ζ,W )) = Φ(L(ζ,W ), µ̄).
This fixed point uniquely determines a pathwise solution X µ̄ to equation (1).

Since Φ is Lipschitz continuous in all its arguments, it follows from Proposition 10 that also
the map that associates the parameter to the fixed point, namely Ψ defined in (16) is Lipschitz
continuous. This is the stability result that we need in order to prove convergence of the particle
system.

Main results.

In this setting, we obtain the following list of results.

Theorem 1 (see Theorem 11). Let p ∈ [1,∞) and assume b Lipschitz. For i = 1, 2, let
(ζ i,W i) ∈ Lp(Rd × CT ,Pi) be two sets of input data. There exist unique pathwise solutions
X i ∈ Lp(CT ) to equation (1), driven by the respective input data. Moreover,

Wp(L(ζ1,W 1, X1),L(ζ2,W 2, X2)) ≤ CWp(L(ζ1,W 1),L(ζ2,W 2)),

for some constant C = C(p, T, b) > 0.

We obtain a similar results for the case when the driver W is a random variable over the càdlàg
space DT .

Lemma 2 (see Lemmas 20 and 21). Let

Φ : P(Rd ×DT )× P(DT )→ P(DT ), (L(ζ,W ), µ) 7→ L(Xµ).

be defined similarly as (4). The fixed point map Ψ : ν 7→ µ = φ(ν, µ) is continuous with
respect to the weak convergence of measures.
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We note that, in the case of jump processes, we have only weak continuity of the law of the
solution with respect to the law of the inputs. We don’t prove Lipschitz continuity with respect to
the stronger Wasserstein normWp.

As application off the main result, we have

Corollary 3 (see Theorem 22). Consider the N -particle system (2) with (not necessarily Brow-
nian! not necessarily independent!) random driving noise W (N) := (W 1,N , . . . ,WN,N) and
initial data ζ(N) := (ζ1,N , . . . , ζN,N). Assume convergence (in p-Wasserstein sense) of the
empirical measure

LN(ζ(N)(ω),W (N)(ω))→ ν ∈ Pp(Rd × CT )

for a.e. ω (resp. in probability) w.r.t. P. Then the empirical measure LN(X(N)) of the particle
system converges in the same sense and the limiting law is characterized by a generalized
McKean-Vlasov equation, with input data distributed like ν.

Natural non-i.i.d. situations arises in presence of common noise, cf. Section 3.3, or in the pres-
ence of heterogeneous inputs, cf. Section 3.4. In an i.i.d. setting, the required assumption is
(essentially trivially) verified by the law of large number. Independent driving fractional Brown-
ian motions, for instance, are immediately covered. Another consequence concerns the large
deviations.

Definition 4. Let E be a Polish space and (µN)N∈N a sequence of Borel probability measures
on E. Let (aN)N∈N be a sequence of positive real numbers with limN→∞ aN = ∞. Given
a lower semicontinuous function I : E → [0,∞], the sequence µN is said to satisfy a large
deviations principle with rate I if, for each Borel measurable set A ⊂ E,

− inf
x∈A◦

I(x) ≤ lim inf a−1
N log(µN(A)) ≤ lim sup

N→∞
a−1
N log(µN(A)) ≤ − inf

x∈Ā
I(x).

Here A◦ is the interior of A and Ā its closure. Moreover, if the sublevel sets of I are compact,
then I is said to be a good rate function.

We say that a sequence of random variables (XN)N∈N on E satisfies a large deviations prin-
ciple, if the sequence of the distributions (L(XN))N∈N does.

The following generalizes a classical result of Dawson–Gärtner [12], see also Deuschel et al.
[14].

Corollary 5 (see Theorem 42). In the i.i.d. case, the empirical measure LN(X(N)) satisfies a
large deviations principle with rate function, defined on a suitable Wasserstein space over CT ,

µ 7→ H(µ | Φ(L(ζ,W ), µ)),

where H is the relative entropy and Φ is introduced below.

This result is consistent with the one obtained in [36, Theorem 5.1], for the case of drivers given
as i.i.d. Brownian motions.

One can easily drop the i.i.d. assumption, and replaceH by an “assumed” large deviations prin-
ciple I for the convergence of the input laws. In this case the outputs satisfy a large deviations
principle.
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Pathwise McKean–Vlasov theory 5

Corollary 6 (see Lemma 40). If the empirical measure of the inputs LN(ζ(N),W (N)) satisfies
a large deviations principle with (good) rate function I , then the empirical measure LN(X(N))
satisfies a large deviations principle with (good) rate function µ 7→ I(fµ#µ), defined on a suit-
able Wasserstein space over CT . Here fµ is defined in (41).

Think of fµ as the function that reconstruct the inputs (initial condition, driving path) from the
solution of an ordinary differential equation (ODE).

The method presented here can be also applied to SDE defined in a domainD ⊂ Rd, assumed
to be a convex polyhedron for simplicity, and with reflection at the boundary. We consider the
generalized McKean-Vlasov Skorokhod problem{

dXt = b(t,Xt,L(Xt, kt))dt+ dWt − dkt, X0 = ζ,
d|k|t = 1Xt∈∂Dd|k|t, dkt = n(Xt)d|k|t.

(5)

We have the following:

Theorem (see Theorem 33). Let p ∈ [1,∞) and assume b Lipschitz. For i = 1, 2, let
(ζ i,W i) ∈ Lp(D̄ × CT ,Pi) be two sets of input data. Then there exist unique pathwise
solutions (X i, ki) to the generalized McKean-Vlasov Skorokhod problem (5), driven by the re-
spective input data. Moreover,

Wp(L(ζ1,W 1, X1, k1),L(ζ2,W 2, X2, k2)) ≤ CWp(L(ζ1,W 1),L(ζ2,W 2)).

with C = C(p, T, b) > 0.

Battery modelling

Our initial motivation for the heterogeneous particles case comes from modeling lithium-ion
batteries. The numerical simulations of [19] indicate that the capacity of the battery and its
efficiency is mainly determined by the size distribution of the lithium iron phosphate particles. It
is thus important to allow for the particles to be of fixed different, predetermined sizes.

Lithium-ion batteries are the most promising storage devices to store and convert chemical en-
ergy into electrical energy and vice versa. In [19] lithium-ion batteries are studied where at least
one of the two electrodes stores lithium within a many-particle ensemble, for example each
particle of the electrode is made of Lithium-iron-phosphate. One of the practical achievements
of [19] consists of the conclusions that the capacity of the battery and its efficiency as well is
dominantly determined by the size distribution of the storage particles, ranging from 20 to 1000
nanometers. The radii ri of the particles in the battery are distributed according to a distribution
λ ∈ P([20, 1000]). However, in the numerical simulations, it leads to better accuracy to artifi-
cially choose the radii in advance, instead of randomly sample them. For instance, assume that
we want to simulate 1000 particles, whose radii can be of exactly two given sizes, r1, r2, with
equal probability. It is much more convenient to choose 500 particles of radius r1 and 500 of ra-
dius r2, instead of sampling them from a binomial, as this could lead to imbalanced simulations
and introduce an extra source of error. For this reason it is important that the theoretical results
support the use of carefully chosen radii ri of different length, such their empirical measure
converges, as the number of particles grows, to a desired distribution λ. The radii so chosen,
are deterministic (hence, independent), but not identically distributed.

The dynamics of the charging/discharging process is modeled in [19] by a coupled system of
SDEs for the evolution of the lithium mole fractions Y i,N ∈ [0, 1] of particles i = 1, 2, . . . , N
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of the particle ensemble. The evolution of Y i,N over a time interval [0, T ] is described by the
following system of SDEs

dY i,N
t = 1

τi
(Λt,Li − µLi(Y i,N

t ))dt+ dW i
t − dk

i,N
t

d|ki,Nt | = 1Y i,Nt ∈{0,1}d|k
i,N
t |, dki,Nt = n(Y i,N

t )d|ki,Nt |,
Y i,N

0 = a ∈ [0, 1].

i = 1, . . . , N, (6)

We assume that all the particle have the same amount of lithium mole fraction a ∈ [0, 1] at
time t = 0. In practice, this initial condition is very close to 1, when the battery is empty and
very close to 0, when the battery is charged. The particles are driven by a family of independent
Brownian motions W (N) := (W i)1≤i≤N , which account for random fluctuations that can occur
within the system during charging and discharging. The quantity τi ≡ τ(ri), which is related to
the relaxation time, is a function of the radius ri of the particle. As discussed earlier, the radii can
only have values in a fixed range I := [rmin, rmax] ⊂ (0,∞). We assume that τ−1 : I → R
is Lipschitz and bounded. The term µLi : R → R is the chemical potential of the Lithium and,
in this framework, it is also taken Lipschitz and bounded. The interaction between particles is
encoded in the surface chemical potential

Λt,Li := qt +
1

N

N∑
j=1

µLi(Y
j,N
t )

τj
,

where qt is a given measurable and bounded function characterizing the state of charge of the
battery at time t ∈ [0, T ]. By the assumptions on µLi and τ , the surface chemical potential
is a bounded and Lipschitz continuous function of the empirical distribution of the Lithium mole
fractions and radii, µN := 1

N

∑N
i=1 δ(Y it ,r

i). Moreover, we impose on the particles Skorokhod-
type boundary conditions, of the same type as the ones described in Section 4. We call n(x)
the outer unit normal vector, which, in this case, reduces to n(x) = (−1)x+1, for x ∈ {0, 1}.
This will force the mole fraction of each particle to remain in [0, 1].

Under the previous assumptions, the particle system (6) can be essentially treated combining
the results of Theorem 33 and Corollary 28, as follows. To unify the notation to the rest of the
paper, we define

b : [0, T ]× R× R× P(R× R)→ R, (t, x, r, ν) 7→ qt + 〈ν, µLi
τ
〉 − µLi(x)

τ(r)
,

and we consider the following generalized McKean-Vlasov Skorokhod equation{
dXt = b(t,Xt, R,L(Xt, R))dt+ dWt − dkt, X0 = a,
d|k|t = 1Xt∈∂Dd|k|t, dkt = n(Xt)d|k|t,

(7)

The input data are given by a ∈ [0, 1], R ∈ Lp(I) and W ∈ Lp(CT ), for p ∈ [1,∞). The
solution is a couple (X, k) ∈ CT ([0, 1]) × CT . When W := W (N) ∈ Lp(ΩN , CT ) and
R = R(N) = (r1, · · · , rN) ∈ Lp(ΩN , CT (I)) (the radii are constant path in I), we recover
the system (6). We assume that the radii ri are sampled from a distribution λ ∈ Pp(CT (I)) in

such a way that LN(R(N))
∗
⇀ λ, this gives the limit process (X, k) solution to (7), driven by

(W,R) ∈ CT × CT (I) with law µW ⊗ λ (here µW is the Wiener measure). We summarize
this in the following proposition.

Proposition 7. Let p ∈ [1,∞) and let (W i)i∈N be a family of independent Brownian motions
on R. Assume I ⊂ (0,∞) is a closed interval and let (ri)i∈N ⊂ I be a sequence in I , such
that

LN(R(N))
∗
⇀ λ ∈ Pp(I).
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Pathwise McKean–Vlasov theory 7

Then, for everyN ∈ N, equation (6) admits a unique solution (Y (N), k(N)) := (Y i,N , ki,N)i=1,...,N .
Moreover,

L(N)(Y (N), k(N))
∗
⇀ L(X, k),

where (X, k) is a solution to equation (7), with input data (W,R) ∈ CT × CT (I) with law
µW ⊗ λ.

The proof of this proposition (which we will not give in full details) follows exactly as the proof of
Corollary 28, with the difference that, instead of Theorem 11, one applies Theorem 33.

Structure of the paper.

In Section 2 we prove the well-posedness for the generalized McKean-Vlasov equation (1). In
Section 3 we present applications to classical mean field particle approximation, heterogeneous
mean field and mean field with common noise as corollaries of the main result. Finally, we adapt
the result to study McKean-Vlasov equations with reflection at the boundary, see Section 4 and
we show a (classical) large deviations result as a straightforward application in Section 5.

1.1 Notation

Given p in [1,+∞) and a Polish space E, with metric induced by a norm ‖ · ‖E , we denote by
Pp(E) the space of probability measures on E with finite p-moment, namely the measures µ
such that ∫

E

‖x‖pEdµ(x) < +∞.

For T > 0, we denote by CT (Rd) := C([0, T ],Rd) (the space of continuous functions
from [0, T ] to Rd), endowed with the supremum norm ‖f‖∞:T := supt∈[0,T ] |f(t)|, for f ∈
CT (Rd). When there is no risk of confusion about the codomain, we denote the space of con-
tinuous functions by CT . Moreover, when there is non risk of confusion about the time interval,
we use the lighter notation ‖ · ‖∞. Moreover, we call CT,0 = {γ ∈ CT | γ0 = 0}, the subsets
of paths that vanish at time 0.

For a domain D̄ in Rd, we denote byCT (D̄) := C([0, T ], D̄) (continuous functions from [0, T ]
to D̄), endowed with the supremum norm ‖ · ‖∞.

Given t ∈ [0, T ], the projection πt is defined as the function πt : CT → Rd as πt(γ) := γ(t).
We define the marginal at time t of µ ∈ Pp(CT ) as µt := (πt)#µ ∈ Pp(Rd). We also denote
by µ|[0,t] the push forward of µ with respect to the restriction on the subinterval [0, t].

Given a Polish space (E, d), the p-Wasserstein metric on Pp(E) is defined as

WE,p(µ, ν)p = inf
m∈Γ(µ,ν)

∫∫
E×E

d(x, y)pm(dx, dy), µ, ν ∈ Pp(E), (8)

where Γ(µ, ν) is the space of probability measures on E × E with first marginal equal to µ
and second marginal equal to ν. We will omit the space E from the notation when there is no
confusion.

We denote by L(X) the law of a random variable X .

We use Cp to denote constants depending only on p.

DOI 10.20347/WIAS.PREPRINT.2618 Berlin 2019
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Let C∞c and Cn be the set of infinitely differentiable differentiable real-valued functions of com-
pact support defined on Rd and the set of n times continuously differentiable functions on Rd

such that
‖ϕ‖Cn :=

∑
|α|≤n

sup
x∈Rd
|Dαϕ| < +∞.

Let Lip1 be the space of Lipschitz continuous functions in C0, such that

‖ϕ‖C0 , sup
x6=y∈Rd

|ϕ(x)− ϕ(y)|
|x− y|

≤ 1.

For T > 0, we denote by DT (Rd) := D([0, T ],Rd), the space of càdlàg functions (right-
continuous with left limit) from [0, T ] to Rd. When there is no risk of confusion about the
codomain, we denote the space of cadlag functions by DT . For γ ∈ DT (Rd), ‖γ‖∞:T :=
supt∈[0,T ] |f(t)|. Moreover, when there is no risk of confusion about the time interval, we use
the lighter notation ‖ · ‖∞. We endow DT with the Skohorod metric, defined as follows

σ(γ, γ′) = inf {λ ∈ Λ | ‖λ‖+ ‖γ − γ′ ◦ λ‖∞} , γ, γ′ ∈ DT , (9)

where Λ is the space of strictly increasing bijections on [0, T ] and

‖λ‖ := sup
s6=t

∣∣∣∣log

(
λs,t
t− s

)∣∣∣∣ , λ ∈ Λ.

The space (DT , σ) is a Polish space.

2 The main result

In this section we study the generalized McKean-Vlasov SDE on a probability space (Ω,A,P),{
dXt = b(t,Xt,L(Xt))dt+ dWt

X0 = ζ.
(10)

Here the drift b : [0, T ]×Rd×Pp(Rd)→ Rd is a given Borel function, the input to the problem
is the random variable

(ζ,W ) : Ω → Rd × CT ,

and X : Ω → CT is the solution. As we will see later, the law L(X) of the solution depends
only on the law L(ζ,W ), for this reason we refer also to L(ζ,W ) as input.

Note two differences here with respect to classical SDEs: the drift depends on the solution X
also through its law and W is merely a random continuous paths; in particular, it does not
have to be a Brownian motion. For these differences, it is worth giving the precise definition of
solution.

Definition 8. Let (Ω,A,P) be a probability space and let ζ : Ω → Rd, W : Ω → CT
be random variables on it. A solution to equation (10) with input (ζ,W ) is a random variable
X : Ω→ CT such that, for a.e. ω, the function X(ω) satisfies the following integral equality

Xt(ω) = ζ(ω) +

∫ t

0

b(s,Xs(ω),L(Xs))ds+Wt(ω).
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Pathwise McKean–Vlasov theory 9

We assume the following conditions on b:

Assumption 1. Let p ∈ [1,∞). The drift b : [0, T ] × Rd × Pp(Rd) → Rd is a measurable
function and there exists a constant Kb such that,

|b(t, x, µ)− b(t, x′, µ′)|p ≤ Kb

(
|x− x′|p +WRd,p(µ, µ

′)p
)
,

∀t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈ Pp(Rd).

Before giving the main result, we introduce some notation. For a given µ inPp(CT ), we consider
the SDE {

dY µ
t = b(t, Y µ

t , µt)dt+ dWt

Y µ
0 = ζ.

(11)

We have the following well-posedness result

Lemma 9. Under Assumption 1, for every input (ζ,W ) ∈ Lp(Rd × CT ) and µ ∈ Pp(CT ),
there exists a unique Y µ ∈ Lp(CT ) which satisfies, ∀ω ∈ Ω,

Y µ
t (ω) = ζ(ω) +

∫ t

0

b(s, Y µ
s (ω), µs)ds+Wt(ω).

Moreover, denote by
Sµ : Rd × CT → CT

(x0, γ) 7→ Sµ(x0, γ),
(12)

where Sµ(x0, γ) is a solution to the ODE

xt = x0 +

∫ t

0

b(s, xs, µs)ds+ γt. (13)

Then, Y µ = Sµ(ζ,W ).

Proof. For every couple (x0, γ) ∈ Rd×CT the ODE (13) classically admits a solutionSµ(x0, γ),
which is continuous with respect to the inputs (x0, γ). It is easy to verify that Sµ(ζ,W ) solves
equation (11). We only verify that Y µ has finite p-moments. There exists a constant C(p, b, T )
such that

E‖Y µ‖p∞ ≤ E|ζ|p + C

(
1 +

∫ T

0

E sup
s∈[0,t]

|Y µ|p∞dt+

∫ T

0

∫
Rd
|x|pdµt(x)dt

)
+ E‖W‖p∞.

We notice that
∫
Rd |x|

pµt(dx) ≤
∫
CT
‖γ‖p∞dµ(γ) < +∞. Gronwall’s inequality and the

assumptions on (ζ,W ) conclude the proof.

We call
Φ : Pp(Rd × CT )× Pp(CT ) → Pp(CT )

(L(ζ,W ), µ) 7→ L(Y µ) = (Sµ)#L(ζ,W ),
(14)

the push forward of a probability measure L(ζ,W ) under the solution map Sµ defined in (12).
We denote the parameter dependent map Φ(ν, ·) by Φν .

Note that X uniquely solves the McKean-Vlasov equation (10) with input (ζ,W ), if and only if
L(X) is a fixed point of ΦL(ζ,W ):
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� ifX solves (10), then, by uniqueness for fixed µ = L(X),X = SL(X)(ζ,W ) P-a.s. and
so L(X) is a fixed point of ΦL(ζ,W );

� conversely, if µL(ζ,W ) is a fixed point of ΦL(ζ,W ), then X = Sµ
L(ζ,W )

(ζ,W ) has finite
p-moment and solves (10).

Hence existence and uniqueness for (10) in Theorem 11 follow from existence and uniqueness
for fixed points of ΦL(ζ,W ), for any law L(ζ,W ).

For this reason, the main ingredient in the proof of Theorem 11 is the following general propo-
sition, a version of the contraction principle with parameters. The proof is postponed to the
appendix.

Proposition 10. Let (E, dE) and (F, dF ) be two complete metric spaces. Consider a function
Φ : F × E → E with the following properties:

1) (uniform Lipschitz continuity) there exists L > 0 such that

dE(Φ(Q,P ),Φ(Q′, P ′)) ≤ L [dE(P, P ′) + dF (Q,Q′)] .

2) (contraction) There exist a constant 0 < c < 1 and a natural number k ∈ N such that

dE((ΦQ)k(P ), (ΦQ)k(P ′)) ≤ cdE(P, P ′) ∀Q ∈ F, ∀P, P ′ ∈ E,

with ΦQ(P ) := Φ(Q,P ).

Then for every Q ∈ F there exists a unique PQ ∈ E such that

Φ(Q,PQ) = PQ.

Moreover,
∀Q,Q′ ∈ F, dE(PQ, PQ′) ≤ C̃dF (Q,Q′), (15)

where C̃ :=
(∑k

i=1 L
i
)

(1− c)−1.

We give now the main result, from which most of the applications follow. It states well-posedness
of the generalized McKean-Vlasov equation and Lipschitz continuity with respect to the driving
signal.

Theorem 11. Let T > 0 be fixed and let p ∈ [1,∞), assume Assumption 1.

(i) For every input (ζ,W ) ∈ Lp(Rd × CT ), the map ΦL(ζ,W ) has a unique fixed point,
µL(ζ,W ).

(ii) The map that associates the law of the inputs to the fixed point, namely

Ψ : Pp(Rd × CT ) → Pp(CT )
ν 7→ µν

(16)

is well-defined and Lipschitz continuous.

(iii) For every input (ζ,W ), there exists a unique solution X to the generalized McKean-
Vlasov (10), given by X = SΨ(L(ζ,W ))(ζ,W ).
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(iv) There exists a constant C̃ = C̃(p, T, b) > 0 such that: for every two inputs (ζ i,W i),
i = 1, 2 (defined possibly on different probability spaces) with finite p-moments, the
following is satisfied

WCT ,p(L(X1),L(X2)) ≤ C̃WRd×CT ,p(L(ζ1,W 1),L(ζ2,W 2)).

In particular, the law of a solution X depends only on the law of (ζ,W ).

Proof. The result follows from Proposition 10, applied to the spaces E := Pp(CT ), F :=
Pp(Rd × CT ) and the map Φ defined in (14), provided we verify conditions 1) and 2).

Let now µ ∈ E be fixed, let ν1 and ν2 be in Pp(Rd × CT ) and let m be an optimal plan
on (Rd × CT )2 for these two measures. We call optimal plan a measure m that satisfies the
minimum in the Wasserstein distance, see (43). On the probability space ((Rd×CT )2,m), we
call ζ i, W i the r.v. defined by the canonical projections and Y i = Sµ(ζ i,W i) the solution to
equation (11) with input (ζ i,W i). By definition of the Wasserstein metric, we have that

WCT ,p(Φ(ν1, µ),Φ(ν2, µ))p =WCT ,p(L(Y 1),L(Y 2))p ≤ CpEm‖Y 1 − Y 2‖p∞:T .

The right hand side can be estimated using the equation,

Em‖Y 1 − Y 2‖p∞:T ≤CpEm|ζ
1 − ζ2|p + CpEm‖W 1 −W 2‖p∞:T

+KbCp

∫ T

0

Em‖Y 1 − Y 2‖p∞:tdt.

Using Gronwall’s inequality we obtain

WCT ,p(L(Y 1),L(Y 2))p ≤CpeTKbCp
(
Em|ζ1 − ζ2|p + Em‖W 1 −W 2‖p∞:T

)
=L̃WRd×CT ,p(ν

1, ν2)p, (17)

where L̃ := Cpe
TKbCp .

Let now (ζ,W ) be fixed with law ν := L(ζ,W ). Consider µ1, µ2 ∈ E and call Sµ
i
, for

i = 1, 2, the corresponding solution map as defined in (12) (driven by the initial datum ζ and
the path W ). Let t ∈ [0, T ] be fixed. Using equation (11) again, we get that∫

Rd×CT
‖Sµ1(x0, γ)− Sµ2(x0, γ)‖p∞:t dν(x0, γ) ≤ KpCp

∫ t

0

WCs,p(µ
1|[0,s], µ2|[0,s])pds

+KpCp

∫ t

0

∫
Rd×CT

‖Sµ1(x0, γ)− Sµ2(x0, γ)‖p∞:s dν(x0, γ)ds.

We deduce by the definition of Φν and Wasserstein distance and applying Gronwall’s lemma
that

WCt,p(Φ
ν(µ1)|[0,t],Φν(µ2)|[0,t])p ≤

∫
Rd×CT

‖Sµ1(x0, γ)− Sµ2(x0, γ)‖p∞:t dν(x0, γ)

≤CpKbe
tKbCp

∫ t

0

WCs,p(µ
1|[0,s], µ2|[0,s])pds. (18)

Taking t = T , we have that

WCT ,p(Φ
ν(µ1),Φν(µ2))p ≤ L̃WCT ,p(µ

1, µ2)p. (19)
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With estimates (17) and (19) we have shown that Φ satisfies 1).

To prove 2), we reiterate k times the application Φν and we use (18) to obtain

WCT ,p((Φ
ν)k(µ1), (Φν)kν(µ

2))p ≤L̃k
∫ T

0

∫ tk

0

· · ·
∫ t2

0

WCt1 ,p
(µ1|[0,t1], µ

2|[0,t1])
pdt1 . . . dtk

≤L̃kWCT ,p(µ
1, µ2)p

∫ T

0

∫ tk

0

· · ·
∫ t2

0

dt1 . . . dtk

≤(TL̃)k

k!
WCT ,p(µ

1, µ2)p.

By choosing k > 0 large enough, we have that c := (T L̃)k

k!
< 1. This shows point 2) and

concludes the proof.

If the driving process is progressively measurable, then so is the solution:

Proposition 12. Let (Ft)t≥0 be a right-continuous, complete filtration on (Ω,A,P) such that
ζ is F0-measurable and W is (Ft)t≥0-progressively measurable. Then the solution X to (10)
is also (Ft)t≥0-progressively measurable.

Proof. The proof is classical. Fix t in [0, T ], then, P-a.e., the restriction X|[0,t] = X|[0,t](ω)
on [0, t] of the solution X also solves (11) on [0, t] with inputs ζ and W |[0,t] (restriction of W
on [0, t]) and input measure µ|[0,t] (pushforward of µ = L(X) by the restriction on [0, t]).

Therefore X|[0,t](ω) = S
µ|[0,t]
t (ζ,W |[0,t]). Since S

µ|[0,t]
t is B(Rd) ⊗ B(Ct)-measurable and

ζ and W |[0,t] are Ft-measurable, also X|[0,t] is Ft-measurable, in particular X|[0,t] is Ft-
measurable. Hence X is adapted and therefore progressively measurable by continuity of its
paths.

2.1 Weak continuity

In this note we are generally interested in proving quantitative convergence in the Wasserstein
distance. However, one can show that the law of the solution of the mean field equation (10) is
continuous in the weak topology of measures, with respect to the law of the inputs, in the spirit
of [36].

Assumption 2. Given a Polish space (E, d), we endow the space P(E) with a metric ΠE ,
with the following properties

(i) The metric ΠE is complete and metrizes the weak convergence of measures.

(ii) For any two random variables X,X ′ : Ω→ E, we have

ΠE(L(X),L(X ′)) ≤ Ed(X,X ′).

Remark 13. Let Lip1 be the space of bounded and Lipschitz functions on E, as defined in
Section 1.1. Define the Kantorovich-Rubinstein metric as

ΠE(µ, ν) := sup
ϕ∈Lip1

∫
E

ϕd(µ− ν),

This metric satisfies Assumption 2. Note that 2 (i) follows from [7, Theorem 8.3.2 and Theorem
8.9.4]
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For the drift we assume the following.

Assumption 3. The drift b : [0, T ] × Rd × P(Rd) → Rd is a measurable function and there
exists a constant K such that,

� (Lipschitz continuity)

|b(t, x, µ)− b(t, x′, µ′)| ≤ K (|x− x′|+ ΠRd(µ, µ
′)) ,

∀t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈ P(Rd).

� (boundedness)
|b(t, x, µ)| ≤ K,

∀t ∈ [0, T ], x ∈ Rd, µ ∈ P(Rd).

Remark 14. Assume that there exists a function B : Rd × Rd → Rd such that there exists a
constant C > 0,

|B(x, y)| ≤ C, |B(x, y)−B(x′, y′)| ≤ C (|x− x′|+ |y − y′|) , ∀x, x′, y, y′ ∈ Rd,

and the drift satisfies b(t, x, µ) :=
∫
Rd B(x, y)µ(dy). Then b satisfies Assumptions 3, with

K = 3C . This is the case treated in [36].

Lemma 15. Given ν ∈ P(Rd × CT ), the solution map

Sν : Rd × CT → CT
(x0, γ) 7→ Sν(x0, γ),

(20)

to the ODE

xt = x0 +

∫ t

0

b(s, xs, (xs)#ν)ds+ γt. (21)

is well defined.

Proof. We prove the lemma by iteration. For a fixed x0, γ ∈ Rd × CT , define x0
t := x0 + γt,

and xn+1
t defined implicitly as xn+1

t = x0 +
∫ t

0
b(s, xn+1

s , (xns )#ν)ds + γt. Clearly, for every
n ∈ N, the function (x0, γ) 7→ xn is well defined and measurable.

We compute the following, for t ∈ [0, T ], using Assumption 3, Gronwall’s Lemma and Assump-
tion 2 (ii)

|xnt −xn+1
t | ≤ KeKt

∫ t

0

ΠRd((x
n−1
s )#ν, (x

n
s )#ν)ds ≤ KeKt

∫ t

0

∫
Rd×CT

|xn−1
s −xns |dνds.

Iterating this inequality down to n = 0, we obtain that there exists a positive constant C(T,K),
independent of n, such that

|xnt − xn+1
t | ≤ C(T,K)n

n!
.

Hence, we have that, for every x0, γ ∈ Rd × CT , the sequence (xn(x0, γ))n≥0 is Cauchy in
(CT , ‖ · ‖∞). Indeed, for ε > 0, there exists m > 0 big enough, such that for every n ≥ m,

‖xm − xn‖∞ ≤
n−1∑
i=m

‖xi − xi+1‖∞ ≤
∞∑
i=m

C(T,K)i

i!
< ε.

We call x(x0, γ) ∈ CT its limit as n→∞. The pointwise limit of Borel measurable functions is
measurable, hence (x0, γ) 7→ x is also measurable and (xs)#ν is well-defined. We can thus
pass to the limit in equation (21) to show that x is a solution to it.
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Lemma 16. The function

Ψ : (P(Rd × CT ),ΠRd×CT ) → (P(CT ),ΠCT )
ν 7→ (Sν)#ν,

(22)

is continuous. By Assumption 2 (i), this is equivalent to continuity with respect to the topology
induced by the weak convergence of measures.

Proof. Let (νn)n≥0 ⊂ P(Rd × CT ) be a sequence of probability measures that converges
weakly to ν ∈ P(Rd × CT ). From Skohorokhod representation theorem, there exists a prob-
ability space (Ω,A,P) and a sequence (ζn,W n) : Ω → Rd × CT of random variables
distributed as νn that converges almost surely to a random variable (ζ,W ) distributed as ν.

Let Xn := Sν
n
(ζn,W n). By definition, µn := L(Xn) = Ψ(νn) and Xn solves the following

SDE in the sense of Definition 8,

Xn
t = ζn +

∫ t

0

b(s,Xn
s ,L(Xn

s ))ds+W n
t .

It is easy to check that the random variables Xn are equicontinuous and equibounded and
deduce that the family µn is tight in CT . With an abuse of notation, assume that (µn)n≥0 is a
subsequence that converges weakly to some µ ∈ P(CT ), and (Xn)n≥0 such that L(Xn) =
µn. By using the equation, one can check that (Xn(ω))n≥0 is a Cauchy sequence in CT for
P− a.e. ω. Let X be the almost sure limit of Xn, as n→∞. Clearly, µn converges weakly to
L(X), hence L(X) = µ. Passing to the limit in the equation, we can see that µ = L(X) =
Ψ(ν). This concludes the proof.

2.2 Càdlàg drivers

In this section we follow the same reasoning as Section 2.1 to study the case when the drivers
are discontinuous processes in (DT , σ). We first set some notation and recall some results
about càdlàg functions.

Given t ∈ [0, T ], the projection πt is defined, analogously to the continuous case, as the
function πt : DT → Rd as πt(γ) := γ(t).

Definition 17. For a function γ ∈ DT , we define its càdlàg modulus as a function of δ ∈ (0, 1),

wγ(δ) = inf
Π

max
1≤i≤n

sup
ti−1≤s≤t≤ti

|γs,t|,

where the infimum is taken over all the partitions Π with mash size bigger than δ.

Then we have the following lemma, from [6, equation (13.3)].

Lemma 18. Let (νn)n≥0 ⊂ P(DT ) be a sequence of probability measures converging weakly
to ν ∈ P(DT ), then there exists a set Tν ⊂ [0, T ] of full Lebesgue measure (actually T cν is at
most countable) such that νnt converges weakly to νt, for all t ∈ Tν .

Given a Polish space (E, d), we use once again the notation ΠE to denote a distance onP(E)
that satisfies Assumption 2.

For the drift we assume the following.
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Assumption 4. The drift b : Rd × P(Rd) → Rd is a measurable function and there exists a
constant K such that,

� (Lipschitz continuity)

|b(x, µ)− b(x′, µ′)| ≤ K (|x− x′|+ ΠRd(µ, µ
′)) ,

∀x, x′ ∈ Rd, µ, µ′ ∈ P(Rd).

� (boundedness)
|b(x, µ)| ≤ K,

∀x ∈ Rd, µ ∈ P(Rd).

Remark 19. The function b defined in Remark 14 also satisfies Assumptions 4.

2.2.1 Well-posedness and continuity

We have the following results, analogously to Section 2.1.

Lemma 20. Let b satisfy Assumptions 4. Given ν ∈ P(Rd ×DT ), the solution map

Sν : Rd ×DT → DT

(x0, γ) 7→ Sν(x0, γ),
(23)

to the ODE

xt = x0 +

∫ t

0

b(xs, (xs)#ν)ds+ γt. (24)

is well defined.

Proof. The proof of this lemma follows exactly the proof of Lemma 15. We define the sequence
(xn)n∈N ⊂ DT and show that it is a Cauchy sequence in the uniform norm ‖ · ‖∞. By taking
λ(t) = t in the definition of σ, equation (9), one notices immediately that σ is bounded by the
distance induced by ‖ · ‖∞. Hence, (xn)n∈N is a Couchy sequence in σ and the conclusion
follows as in Lemma 15.

Lemma 21. The function

Ψ : (P(Rd ×DT ),ΠRd×DT ) → (P(DT ),ΠDT )
ν 7→ (Sν)#ν,

(25)

is continuous. By assumption, this is equivalent to continuity with respect to the topology induced
by the weak convergence of measures.

Proof. Let (νn)n≥0 ⊂ P(Rd × DT ) be a sequence of probability measure that converges
weakly to ν ∈ P(Rd ×DT ). From Skohorokhod representation theorem, there exists a prob-
ability space (Ω,A,P) and a sequence (ζn,W n) : Ω → Rd × DT , for n ≥ 0, of random
variables distributed as νn which converges almost surely to a random variable (ζ,W ) dis-
tributed as ν.

Let Xn := Sν
n
(ζn,W n). By definition, µn := L(Xn) = Ψ(νn) and Xn solves the following

SDE pathwise,

Xn
t = ζn +

∫ t

0

b(Xn
s ,L(Xn

s ))ds+W n
t .
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By construction, the laws of W n are tight. Equivalently, by [6, Theorem 13.2], they satisfy

lim
a→∞

lim sup
n→∞

P{‖W n‖∞ ≥ a} = 0, (26)

∀ε > 0, lim
δ→0

lim sup
n∈N

P{wWn(δ) ≥ 0} = 0. (27)

It follows from Assumption 4 that the random variables Xn also satisfy (26) and (27). Thus, we
deduce that the family µn is tight in P(Rd ×DT ).

With an abuse of notation, assume that (µn)n≥0 is a subsequence that converges weakly to
some µ ∈ P(DT ), and (Xn)n≥0 such that L(Xn) = µn. By using the equation, we now
check that (Xn(ω))n≥0 is a Cauchy sequence in (DT , σ) for P− a.e. ω.

First observe that Lemma 18 and Lebesgue dominated convergence imply that
∫ T

0
ΠRd(µ

n
s , µs)ds→

0, as n→∞. Hence (µn)n∈N ⊂ L1([0, T ],P(Rd)) is a Cauchy sequence. Let now Ω0 ⊂ Ω
be a set of full measure such that (ζn(ω),W n(ω)) → (ζ(ω),W (ω)), for all ω ∈ Ω0, as
n→∞.

Fix ω ∈ Ω0, ε > 0 there exists N > 0, such that for all m,n ≥ N , we have

σ(W n(ω),Wm(ω)) < ε, |ζn(ω)− ζm(ω)| < ε,

∫ T

0

ΠRd(µ
n
s , µ

m
s )ds < ε.

We omit now the dependence of the random variables from ω. There exists δ̄ > 0, such that
for every 0 < δ < δ̄, supnw(Xn, δ) < ε. We can choose δ = ε ∧ δ̄, and λ := λ(ω, δ,m, n)
such that

‖λ‖+ ‖W n −Wm ◦ λ‖∞ < δ < ε, (28)

‖Xm +Xm ◦ λ‖∞ < 2w(Xm, δ) < 2 sup
n
w(Xn, δ) < 2ε.

We note that, for all t ∈ [0, T ],∣∣∣∣∫ λt∧t

λt∨t
ds

∣∣∣∣ ≤ |λt − t| ≤ e‖λ‖ − 1,

where the last inequality follows from [6, equation (12.17)]. We can thus compute the following,
for t ∈ [0, T ],∣∣∣∣∫ t

0

b(Xn
s , µ

n
s )ds−

∫ λt

0

b(Xm
s , µ

m
s )ds

∣∣∣∣ ≤K ∣∣∣∣∫ λt∧t

λt∨t
ds

∣∣∣∣+

∫ λt∧t

0

|b(Xn
s , µ

n
s )− b(Xm

s , µ
m
s )| ds

≤K(e‖λ‖ − 1) +K

∫ T

0

ΠRd(µ
n
s , µ

m
s )ds+K

∫ T

0

|Xn
s −Xm

s |ds

≤K(e‖λ‖ − 1) +Kε+K

∫ T

0

|Xn
s − (Xm ◦ λ)s|ds

+K

∫ T

0

|Xm
s − (Xm ◦ λ)s|ds

.4ε+

∫ T

0

|Xn
s − (Xm ◦ λ)s|ds
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From which we deduce

|Xn
t − (Xm ◦ λ)t| ≤|ζn − ζm|+ |W n

t − (Wm ◦ λ)t|+
∣∣∣∣∫ t

0

b(Xn
s , µ

n
s )ds−

∫ λt

0

b(Xm
s , µ

m
s )ds

∣∣∣∣
. ε+ ‖W n −Wm ◦ λ‖+

∫ T

0

|Xn
s − (Xm ◦ λ)s|ds

We add ‖λ‖ on both sides, apply Gronwall’s Lemma and inequality (28) to obtain

σ(Xn(ω), Xm(ω)) < C(T,K)ε.

Hence, we have that Xn(ω) is a Cauchy sequence in (DT , σ), for ω ∈ Ω0.

Let X be the almost sure limit of Xn, as n → ∞. The laws µn converge weakly to L(X),
hence L(X) = µ. Passing to the limit in the equation, we can see that µ = L(X) = Ψ(ν).
This concludes the proof.

3 Applications

3.1 Particle approximation

In this section we show how the results in Section 2 yield a convergence result for a particle
system associated with the McKean-Vlasov equation.

Given inputs ζ̄ and W̄ (on a probability space (Ω,A,P)), we consider the following McKean-
Vlasov equation {

dX̄t = b(t, X̄t,L(X̄t))dt+ dW̄t

X0 = ζ̄ .
(29)

To this, given N ∈ N, we associate the corresponding interacting particle system (on a proba-
bility space (Ω,A,P)),{

dX i,N
t = b(t,X i,N

t , 1
N

∑N
i=1 δXi,N

t
)dt+ dW i,N

t ,

X i,N
0 = ζ i,N ,

i = 1, . . . , N (30)

with given input

(ζ(N),W (N)) : Ω → (Rd × CT )N

ω 7→ (ζ i,N(ω),W i,N(ω))1≤i≤N .

For a given N ∈ N and an N -dimensional vector Y (N) = (Y 1, · · · , Y N) with entries in a
Polish space E, we define the empirical measure associated with Y (N) as

LN(Y (N)) :=
1

N

N∑
i=1

δY i .

As pointed out in the introduction, the main argument of Cass-Lyons/Tanaka approach is that
the particle system (2) can be interpreted as the limiting McKean-Vlasov equation (1) by using
a transformation of the probability space and the input data. The main result Theorem 11 not
only implies well-posedness of both McKean-Vlasov and particle approximation, but also allows
to deduce convergence of the particle system from convergence of the corresponding signals,
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something which is usually easy to verify, for example, if the signals are empirical measures of
independent noises.

Now we show how to interpret equations (29) and (30) as generalized McKean-Vlasov equation
(10). Clearly (29) is (10) with inputs ζ̄ and W̄ . For (30), for fixed N ∈ N, we consider the
space (ΩN ,AN ,PN), where ΩN := {1, . . . , N}, AN := 2ΩN and PN := 1

N

∑N
i=1 δi. On

this space, we can identify any N -uple Y (N) = (Y 1, . . . , Y N) ∈ EN , as a random variable
ΩN 3 i 7→ Y i ∈ E. With this identification, the law of Y (N) on Ω0 is precisely the empirical
measure associated with Y (N), namely LN(Y (N)). Indeed, for each continuous and bounded
function ϕ on E, we have

EPN [ϕ(Y (N))] =
N∑
i=1

1

N
ϕ(Y i) = LN(Y (N))(ϕ).

We assume that (ζ(N)(ω),W (N)(ω)) is valued in (Rd × CT )N for every N and for every
ω ∈ Ω. We fix ω ∈ Ω and N and we apply the previous argument to the N -uples

(ζ(N),W (N))(ω) = ((ζ1,N ,W 1,N)(ω), . . . , (ζN,N ,WN,N)(ω)),

X(N)(ω) = (X1,N(ω), . . . , XN,N(ω)).

For fixedω ∈ Ω, the law of (ζ(N)(ω),W (N)(ω)) on ΩN is the empirical measureLN(ζ(N),W (N))(ω)
and the law ofX(N)(ω) on ΩN is the empirical measure LN(X(N))(ω), which appears exactly
in (30), projected at time t. Hence, for fixed ω in Ω, the interacting particle system (30) is the
generalized McKean-Vlasov equation (10), defined on the space (ΩN ,AN ,PN) and driven by
the empirical measure LN(ζ(N),W (N))(ω).

We are ready to apply Theorem 11 to obtain the following result, which ties the convergence
of the particles to the convergence of the inputs. An immediate consequence is that the em-
pirical measure of the particle system converges if the input converges: no independence or
exchangeability are required.

Theorem 22. Let p ∈ [1,∞) and assume 1. Let (Ω,A,P) be a probability space. For a fixed
N ∈ N, let (ζ(N),W (N)) = (ζ i,N ,W i,N)1≤i≤N : Ω → (Rd × CT )N be a family of random
variables. Let ζ̄ ∈ Lp(Ω,Rd) and W̄ ∈ Lp(Ω, CT ). Then,

i for every ω ∈ Ω, there exists a unique pathwise solution X(N)(ω) in the sense of Defini-
tion 8 to the interacting particle system (30). Moreover, ω 7→ X(N)(ω) isA-measurable.

ii there exists a unique pathwise solution X̄ in the sense of Definition 8 to equation (29).

iii there exists a constant C depending on b such that for all N ≥ 1, for P-a.e. ω ∈ Ω,

WCT ,p(L
N(X(N)(ω)),L(X̄))p ≤ CWRd×CT ,p(L

N(ζ(N)(ω),W (N)(ω)),L(ζ̄ , W̄ ))p.
(31)

Proof. Let N ∈ N. Fix ω ∈ Ω, we apply Theorem 11 in the following setting

(Ω1,A1,P1) := (ΩN ,AN ,PN), (ζ1,W 1)(ω) := (ζ(N)(ω),W (N)(ω)),

(Ω2,A2,P2) := (Ω,A,P), (ζ2,W 2) := (ζ̄ , W̄ ).
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The finite p-moment condition is satisfied by (ζ̄ , W̄ ) by assumption and also by (ζ(N)(ω),W (N)(ω)),
since

‖(ζ1,W 1)(ω)‖pLp(Ω1) =EPN
[
|ζ(N)(ω)|p + ‖W (N)(ω)‖p∞

]
=

1

N

N∑
i=1

|ζ i(ω)|p +
1

N

N∑
i=1

‖W i(ω)‖p∞ < +∞.

Since the assumptions on the drift b are also satisfied, Theorem 11 establishes the existence of
solutions X1(ω) =: X(N)(ω) and X2 =: X̄ . Moreover the map Ψ is continuous, hence ω 7→
L(N)(X(N))(ω) isA-measurable, which makesX(N)(ω) := SL

(N)(X(N))(ω)(ζ(ω),W (N)(ω))
measurable. This gives (i) and (ii). Theorem (11) also gives exactly the inequality in (iii). The
proof is complete.

Remark 23. We stress out that, when looking at the particle system, we are applying Theorem
11 on the discrete space, for a fixed ω, and the law that appears on the drift is the empirical
measure at fixed ω.

Remark 24. In the proof of point iii of Theorem 22, we can actually get the bound for every ω
if we use the pathwise solution X(N)(ω) (in the sense of Definition 8), as this satisfies (30) for
every ω. However, the “P-a.s.” is required when dealing with a solution to the interacting particle
system (30) in the usual probabilistic sense, where (30) is required to hold only P-a.s..

3.2 Classical mean field limit

Now we specialize the previous result in the case of i.i.d. inputs, recovering the classical result
by Sznitman [34]:

Corollary 25. Given a filtered probability space (Ω,A, (Ft)t≥0,P) (with the standard assump-
tions) and p ∈ (1,∞) let (ζ i)i≥1 ⊂ Lp(Ω,Rd), be a family of i.i.d. random variables which are
F0-measurable and (W i)i≥1 be a family of independent adapted Brownian motions. Moreover,
let (ζ̄ , W̄ ) ∈ Lp(Ω,Rd × CT ) be an independent copy of (ζ1,W 1). Then the solutions X(N)

and X̄ to the interacting particles system (30) and the McKean-Vlasov SDE (29), respectively,
given by Theorem 22, are progressively measurable and we have the following convergence

LN(X(N))
∗
⇀ L(X̄), P− a.s. (32)

Remark 26. The classical case when b is a convolution with a regular kernel, say b(t, x, µ) =
(K ∗ µ)(x), is treated here, as b in this case satisfies the assumption of Theorem 22.

Proof of Corollary 25. Progressive measurability for the particle system (30) follows from (11 (ii))
of Theorem 11 and is a consequence of Proposition 12 for the McKean-Vlasov SDE (29).

We prove now the convergence. First recall that Theorem 22, and in particular inequality (31),
applies in this case. Hence, if we can prove that the right-hand-side of (31) goes to zero, we
have the desired convergence (32).

Hence, by Lemma 44, we deduce the convergence in p′-Wasserstein, for every p′ ∈ (1, p).
This is the convergence of the right-hand-side of (31). The proof is complete.
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3.3 Mean field with common noise

In this section we study a system of interacting particles with common noise. We consider the
following system on the space (Ω̄, Ā, P̄),{

dX i,N
t = b(t,X i,N

t , 1
N

∑N
i=1 δXi,N

t
)dt+ dW i

t + dBt

X i,N
0 = ζ i.

i = 1, . . . , N (33)

Here (ζ i)i=1,...,N ⊂ Lp(Ω̄,Rd) is a family of i.i.d. random variables. This system represents
N interacting particles where each particle is subject to the interaction with the others as well
as some randomness. There are two sources of randomness, one which acts independently
on each particle and is represented by the independent family of identically distributed random
variables W (N) = (W i)1≤i≤N ⊂ Lp(Ω̄, CT ). The second source of randomness is the same
for each particle and is represented by the random variableB ∈ Lp(Ω̄, CT ), which is assumed
to be independent from theW i. UsuallyW i andB are Brownian motions, but it is not necessary
to assume it here. The Brownian motion case was considered in [11].

Our aim is to prove that the empirical measure associate to the system converges, asN →∞,
to the conditional law, given B, of the solution of the following McKean-Vlasov SDE{

dX̄t = b(t, X̄t,L(X̄t|B))dt+ dW̄t + dBt

X̄0 = ζ̄ .
(34)

Here ζ̄ is a random variable on Rd and W̄ is random variables on CT distributed as ζ1 and
W 1 respectively. We denote by L(X|B) the conditional law of X given B. Our result is the
following.

Corollary 27. Let p ∈ [1,∞), p′ ∈ (p,∞), and assume 1. Let (Ω̄, Ā, P̄) be a probability
space. On this space we consider independent families ζ(N) = (ζ i)1≤i≤N ⊂ Lp

′
(Ω̄,Rd),

W (N) = (W i)1≤i≤N ∈ Lp
′
(Ω̄, CT ) of i.i.d. random variables. Let ζ̄ be distributed as ζ i,N and

let W̄ be distributed as W i,N and independent of ζ̄ . Moreover, assume that B ∈ Lp(Ω̄, CT ) is
a random variable independent from the others. Then there exists a solutionX(N) ∈ Lp(Ω̄, (CT )N)
to equation (33) and a solution X̄ ∈ Lp(Ω̄, CT ) to equation (34). Moreover, we have

WCT ,p

(
LN(X(N)),L(X̄|B)

)
→ 0, P̄− a.s. as N →∞.

Proof. Since B is independent from the other variables, we can assume, without loss of gener-
ality, that our probability space is of the form (Ω̄, Ā, P̄) := (Ω×Ω′,A⊗A′,P⊗ P′), that the
random variables ζ i, ζ̄,W i and W̄ are defined on a space (Ω,A,P) and the random variable
B is defined on the space (Ω′,A′,P′).

For a fixed path β ∈ CT , we consider the modified inputs, on (Ω,A,P), W i,β := W i + β and
W̄ β := W̄ + β. Let X(N),β (respectively Xβ) be the solution to equation (30) (resp. equation
(29)) with input (ζ(N),W (N),β) (resp. ζ̄ , W̄ β) given by Theorem 22. The Lipschitz bound in
Theorem 22 and the independence of ζ i and W i,β , via Lemma 44, imply that, for P-a.e. ω,

WCT ,p(L
N(X(N),β(ω)),L(Xβ))→ 0.

Now we build the solution X̄ and X(N) resp. to (34) and to (33). We claim that the maps

Ω× CT 3 (ω, β) 7→ Xβ(ω) ∈ CT , Ω× CT 3 (ω, β) 7→ X(N),β(ω)
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have versions that are jointly measurable and, for such versions, we define X̄(ω, ω′) = XB(ω′)(ω)
and X(N)(ω, ω′) = X(N),B(ω′)(ω). Note that, by the definition of XB , for every fixed ω′ ∈ Ω′,
we have P-a.s.

dXB(ω′) = b(t,XB(ω′),LP(XB(ω′)))dt+ dWt + dBt(ω
′),

where the law is taken with respect to the space (Ω,A,P). But the independence of B from
the other variables implies that, P̄-a.s.,

LP(XB) = LP⊗P′(X
B|B).

Hence X̄ is a solution to equation (34) on the product space Ω×Ω′. SimilarlyX(N) is a solution
to (33) on Ω× Ω′. Therefore we have, for P̄-a.e. (ω, ω′),

WCT ,p

(
LN(X(N))(ω, ω′),L(X̄|B)(ω′)

)
=WCT ,p(L

N(X(N),β)(ω),L(Xβ)) |β=B(ω′)→ 0,

which is the desired convergence.

It remains to prove the measurability claim onXβ andX(N),β . We prove it forX(N),β , the proof
for X̄ being analogous. Recall the notation in Section 2 and note that the following maps are
Borel measurable

F1 : Pp(CT )× Rd × CT 3 (µ, x0, γ) 7→ Sµ(x0, γ) ∈ CT ,
F2 : Pp(Rd × CT )× CT 3 (ν, β) 7→ (·+ (0, β))#ν ∈ Pp(CT ),

(where · + (0, β) is the map on Rd × CT defined by (x, γ) + (0, β) = (x, γ + β)). Indeed,
F1 is continuous (because the solution of (11) depends continuously on the drift, the initial data
and the signal), F2 is also Lipschitz-continuous (indeed, for any (β, ν) and (β′, ν ′), if m is an
optimal plan between ν and ν ′, then ((·+(0, β), ·+(0, β′))#m is an admissible plan between
F2(β, ν) and F2(β′, ν ′) and standard bounds give the Lipschitz property). Moreover let Ψ the
map defined in (16). It is continuous, hence measurable. Now we can write, for every β in CT ,
for every i = 1, . . . N ,

X(N),β,i(ω) = F1(Ψ(F2(LN(ζ(N)(ω),W (N)(ω)), β)), ζ i(ω),W i(ω) + β), P− a.s.

and the right-hand side above is composition of measurable maps, hence measurable. There-
fore the right-hand side is a measurable version of X(N),β . The proof is complete.

3.4 Heterogeneous mean field

As a further application of Theorem 22 we want to consider the case of heterogeneous mean
field. We will show the convergence even when the drivers are not identically distributed. This
applies in particular to the results of the physical system studied in [19] as was discussed in the
introduction. In that model, it is assumed that the state of each particle is influenced by its radius.
Particle i has a radius ri, which is deterministic, and it is known that the radii are distributed
according to a distribution λ. We allow here for the radii to be stochastic and not necessarily
identically distributed, but still independent. Moreover, we will assume the volume to change in
time.

Heterogeneous mean field systems appear also in other contexts, see for example (among
many others) [37], [10], which work with semimartingale inputs and use a coupling à la Sznitman
[34].
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On the probability space (Ω,A,P), we consider a family (ζ(N),W (N)) = (ζ i,W i)i≥1 ⊂
Lp(Ω,Rd × CT (Rd)). This family is taken i.i.d.

In addition, for each N ∈ N, we consider a family R(N) = (Ri,N)1≤i≤N ⊂ Lp(CT (Rn)N).

We construct the following interacting particle system{
dX i,N

t = b(t,X i,N
t , Ri,N

t , LN(X
(N)
t , R

(N)
t ))dt+ dW i

t

X i,N
0 = ζ i.

(35)

We call this an heterogeneous particle system because the particles are not exchangeable
anymore, if the Ri,N are not exchangeable.

We assume that the Ri,N are independent of the ζ i and W i and that there exists a measure
λ ∈ Pp(CT (Rn)) such that

LN(R(N))(ω)
∗
⇀ λ, P− a.s.

We also consider the following mean field equation (on a probability space (Ω,A,P)):{
dX̄t = b(t, X̄t, R̄t,L(X̄t, R̄t))dt+ dW̄t

X̄0 = ζ̄

where ζ̄ , W̄ and R̄ are independent random variables distributed resp. as ζ i, W i and λ. The
following result is a corollary of Theorem 22. We also use Lemma 29 and Lemma 30 to deal
with the convergence of the input data.

Corollary 28. Let p ∈ [1,∞). Assume that b : [0, T ] × Rd+n × Pp(Rd+n) → Rd is a
measurable function and there exists a constant Kb such that,

|b(t, x, µ)− b(t, x′, µ′)|p ≤ Kb

(
|x− x′|p +WRd+n,p(µ, µ

′)p
)
,

∀t ∈ [0, T ], x, x′ ∈ Rd+n, µ, µ′ ∈ Pp(Rd+n).

Let (Ω,A,P) be a probability space. On this space we consider independent families ζ(N) =
(ζ i)i≥1 ⊂ Lp

′
(Ω,Rd), W (N) = (W i)i≥1 ∈ Lp

′
(Ω, CT ) of i.i.d. random variables. Let ζ̄ be

distributed as ζ1 and let W̄ be distributed as W 1 and independent of ζ̄ . Moreover, assume
that R(N) = (Ri,N)1≤i≤N is a family of independent random variables in Lp(Ω,Rn) which are
independent from the others. If there is convergence of the heterogeneous part,

LN(R(N))(ω)
∗
⇀ λ P− a.s. as N →∞,

then also the solution converges,

LN(X(N), R(N))
∗
⇀ L(X̄, R̄), P− a.s. as N →∞,

Proof. We start by rewriting the system (35) so that we can invoke Theorem 22. We change the
state space of the system from Rd to Rd × Rn and we define on this new space the process
Y i,N
t := (X i,N

t , Ri,N
t ). Clearly, X i,N is a solution to system (35) if and only if Y i,N solves
dY i,N

t =

(
b(t, Y i,N

t , LN(Y
(N)
t ))

0

)
dt+ d

(
W i
t

Ri,N
t

)
Y i,N

0 =

(
ζ i

Ri,N
0

)
.
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A similar transformation can be applied to the McKean-Vlasov equation to obtain that Ȳt =
(X̄t, R̄t) solves 

dȲt =

(
b(t, Ȳt,L(Ȳt))

0

)
dt+ d

(
W̄t

R̄t

)
Ȳ0 =

(
ζ̄
R̄0

)
.

In this setting the inputs satisfy the assumption of Theorem 22. Hence, we obtain the following
inequality. ∀ω ∈ Ω,

WCT (Rd+n),p(L
N(X(N), R(N)),L(X̄, R̄))p

≤ CWRd×CT (Rd+n),p(L
N(ζ(N), R(N),W (N)),L(ζ̄ , R̄, W̄ ))p.

Almost sure convergence to 0 of the right-hand side is a consequence of Lemma 30 (with
Xi := (ζ i,N ,W i,N) and Yi,N := (Ri,N) on the spaces E := Rd × CT and F := Rn). The
proof is complete.

The following variant of the strong law of large numbers will be useful to prove Lemma 30.

Lemma 29. Let (Xi)i≥1 be a sequence of i.i.d. real-valued centered random variables and let
(Yi,N)1≤i≤N be an independent family of real-valued independent random variables. Moreover,
assume that there exists C > 0 such that

‖Xi‖L4(R) ≤ C, ‖Yi,N‖L4(R) ≤ C, ∀i, N ≥ 1.

Then,

SN :=
1

N

N∑
i=1

XiYi,N → 0, P− a.s.

Proof. We first establish a bound on the fourth moment of the empirical sum SN .

E|SN |4 =
1

N4

N∑
i=1

E
[
X4
i

]
E
[
Y 4
i,N

]
+

6

N4

N∑
i,j=1

E
[
X2
i

]
E
[
X2
j

]
E
[
Y 2
i,N

]
E
[
Y 2
j,N

]
≤ C

N2
.

Only those two terms in the sum do not vanish, because the Xi’s are centered. The constant C
depends on the upper bounds of the random variables. Let p < 1

4
,

EN :=

{
|SN | > 1

Np

}
.

Using Chebychev inequality, we have the following

∞∑
N=1

P{EN} ≤
∞∑
N=1

N4pE[SN ] ≤ C
∞∑
N=1

N4p−2.

For our choice of p, we have convergence of the series. Borel Cantelli’s Lemma implies that

P{lim sup
N→∞

EN} = 0,

which in turn implies almost sure convergence of SN .
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Lemma 30. Let p ∈ [1,∞) be fixed. Let (Xi)i≥1 be a sequence of i.i.d. random variables on a
space (Ω,A,P) taking values in a Polish space E, with law µ ∈ Pp(E). Let (Yi,N)1≤i≤N be
another sequence of random variables taking values on a Polish space F , which is independent
from (Xi)i≥1. Assume that there exists a probability measure λ ∈ Pp(F ) such that

LN(Y (N)) :=
1

N

N∑
i=1

δYi,N
∗
⇀ λ, P− a.s. (36)

Then,
LN(X(N), Y (N))

∗
⇀ µ⊗ λ, P− a.s.

Proof. Since (Xi)i≥1 are a sequence of i.i.d. random variables, there exists a set of full measure

Ωx ⊂ Ω, such that LN(X(N)(ω))
∗
⇀ µ, for every ω ∈ Ωx. Weak convergence implies

tightness of the sequence (LN(X(N))(ω)), thus, for every ε > 0, there exists a compact set
Eω
ε ⊂ E, such that

LN(X(N)(ω))((Eω
ε )c) <

ε

2
, ω ∈ Ωx.

In a similar way, there exists a set of full measure Ωy ⊂ Ω such that for every ε > 0 there
exists a compact F ω

ε ⊂ F that satisfies LN(Y (N)(ω))((F ω
ε )c) < ε

2
, ω ∈ Ωy. For every

ω ∈ Ωx ∩ Ωy, we can consider the compact Kω
ε = Eω

ε × F ω
ε ⊂ E × F and compute the

following

LN(X(N)(ω), Y (N)(ω))(Kω
ε ) ≤ LN(X(N)(ω))((Eω

ε )c) + LN(Y (N)(ω))((F ω
ε )c) < ε.

We have thus shown that the sequence LN(X(N), Y (N)) is almost surely tight. With an abuse
of notation, we call LN a converging subsequence and we take a continuous and bounded test
function of the form ϕ(x, y) := ϕ1(x)ϕ2(y) on E × F . We compute the following

LN(X(N), Y (N))(ϕ)− (µ⊗ λ)(ϕ) =
1

N

N∑
i=1

ϕ2(Yi,N)

[
ϕ1(Xi)−

∫
E

ϕ1(x)dµ(x)

]

+
1

N

N∑
i=1

∫
E

ϕ1(x)dµ(x)

[
ϕ2(Yi,N)−

∫
F

ϕ2(y)dλ(y)

]
.

The first term on the right hand side converges to zero thanks to Lemma 29, since the term in
the brackets is a collection of bounded centered i.i.d. random variables. The second term on the
right-hand side converges by assumption (36).

4 Reflection at the boundary

The problem of SDEs in a domain with reflection has been considered since the works by Sko-
rokhod [31], [32]. The literature is vast and we mention the works by Tanaka [35], Lions and
Sznitman [26] as two of the most important papers. The case of mean field SDEs with reflection
has also been studied, see for example the works by Sznitman [33], Graham and Metivier [18],
which establish well-posedness under general conditions and particle approximation for inde-
pendent inputs and with Brownian motion as driving signal (possibly with a diffusion coefficient).
Also other types of SDEs with mean field interactions and in domains have been studied (with
different kind of reflections), see for example [20], [8].
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Here we show how to adapt the main result, Theorem 11, and the argument to the case of
reflecting boundary conditions. With respect to the previously cited works, we can allow general
continuous paths as inputs, we do not need to assume independence nor exchengeability of
particles for particle approximation.

Throughout this section, we assume thatD is a bounded convex polyhedron inRd with nonempty
interior (see Remark 38 below for extensions).

We are given a Borel vector field b that satisfies the following

Assumption 5. Let p ∈ [1,+∞). The function b : [0, T ] × D̄ × Pp(D̄ × Rd) → Rd is a
measurable function and there exists a constant Kb such that,

|b(t, x, µ)− b(t, x′, µ′)|p ≤ Kb

(
|x− x′|p +WRd,p(µ, µ

′)p
)
,

∀t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈ Pp(D̄ × Rd).

We consider the generalized McKean-Vlasov Skorokhod problem
dXt = b(t,Xt,L(Xt, kt))dt+ dWt − dkt
X ∈ CT (D̄), X0 = ζ,
k ∈ BVT , d|k|t = 1Xt∈∂Dd|k|t, dkt = n(Xt)d|k|t.

(37)

Let (Ω,A,P) be a probability space, the input to equation 37 is a random variable (ζ,W ) with
values in D̄×CT , the solution is the couple (X, k) of random variables satisfying the equation
above, |k| denotes the total variation process of k (not the modulus of k) and n(x) is the outer
normal at x, for x in ∂D, see Remark 32 below for the precise meaning. A short explanation on
the meaning of the k term is given later after the main result.

We give now the precise definition of solution:

Definition 31. Let (Ω,A,P) be a probability space and let ζ : Ω → D, W : Ω → CT be
random variables on it. A solution to the generalized McKean-Vlasov Skorokhod problem with
input (ζ,W ) is a couple of random variables X : Ω → CT (D̄) and k : Ω → CT such
that, for Lebesgue-a.e. t, L(Xt, kt) is in Pp(D̄×Rd) and, for a.e. ω, equation (37) is satisfied
(where X ∈ CT (D̄) means that X is CT (D̄)-valued, k ∈ BVT means that k ∈ BVT :=
BV ([0, T ];Rd) P-a.s. and where the last line is understood in the sense of Remark 32 below).

Remark 32. Actually the last condition is only valid for smooth domains, which is not the case
for D convex polyhedron (it is not smooth at the intersections of the faces of the polyhedron).
For simplicity of notation, here and in what follows (also for the particle system), we keep the
formulation above, with the understanding that the precise condition should be: for a.e. ω there
exists a Borel function γ = γω : [0, T ] → Rd such that dkt = γtd|k|t and, for d|k|-a.e. t, γt
belongs to d(Xt), where

d(x) =

{ ∑
i,x∈∂Di

αini | αi ≥ 0,

∣∣∣∣∣ ∑
i,x∈∂Di

αini

∣∣∣∣∣ = 1

}

and where ∂Di are the faces of the polyhedron with outer normals ni.

Our main result is, as before, well-posedness of the generalized McKean-Vlasov Skorokhod
problem and Lipschitz continuity with respect to law of the input.

Theorem 33. Let T > 0 be fixed and let p ∈ [1,∞). Assume that b satisfies 5.

DOI 10.20347/WIAS.PREPRINT.2618 Berlin 2019



M. Coghi, J.-D. Deuschel, P.K. Friz, M. Maurelli 26

1 For every input (ζ,W ) (random variable in Lp(D̄ × CT )) with finite p-moment, there
exists a unique solution (X, k) to the generalized McKean-Vlasov Skorokhod problem
(37).

2 There exists a constant C̃ = C̃(p, T, b) > 0 such that: for every two inputs (ζ i,W i),
i = 1, 2 (defined possibly on different probability spaces) with finite p-moments, the
following is satisfied

WCT (D̄)×CT ,p(L(X1, k1),L(X2, k2)) ≤ C̃WD̄×CT ,p(L(ζ1,W 1),L(ζ2,W 2)).

In particular, the law of a solution (X, k) depends only on the law of (ζ,W ).

To prove this result, we regard the generalized McKean-Vlasov Skorokhod problem as a fixed
point problem with parameter. For this, we introduce the following Skorokhod problem, for fixed
µ in Pp(CT (D̄)× CT ) (calling µt the marginal at time t):

dY µ
t = b(t, Y µ

t , µt)dt+ dWt − dhµt
Y µ ∈ CT (D̄), Y µ

0 = ζ,
hµ ∈ BVT , d|hµ|t = 1Yt∈∂Dd|hµ|t, dh

µ
t = n(Yt)d|hµ|t.

(38)

We recall the following well-posedness result for µ fixed:

Lemma 34. Fix µ in Pp(CT (D̄) × CT ) and assume that b is Lipschitz and bounded as in
Theorem 33. Then, for every T > 0, for every deterministic initial datum ζ ≡ x0 in D̄ and for
every deterministic path W ≡ γ in CT , there exists a unique solution (Y, h) = (Y µ, hµ) in
CT (D̄)× CT to the above equation.

This result is classical and one can see it as a consequence of well-posedness for Skorokhod
problem without drift, via Lemma 35 below, in the same line of the proof of Theorem 33 (see in
particular the bound (39)). We call Sµ : D̄ × CT → CT (D̄) × CT the solution map to (38),
that is, Sµ(x0, γ) = (Y µ, hµ) where (Y µ, hµ) solves (38) with deterministic input (x0, γ) ∈
D̄ × CT .

For a general random input (ζ,W ) in Lp(D̄ × CT ), this result, applied to (ζ(ω),W (ω)) for
a.e. ω, gives existence and pathwise uniqueness of a solution (Y µ, hµ) to (38) and the repre-
sentation formula (Y µ, hµ) = Sµ(ζ,W ). Moreover, again from Lemma 35 below, if the input
(ζ,W ) has finite p-moment, then also the solution (Y µ, hµ) has finite p-moment. We call

Φ : Pp(D̄ × CT )× Pp(CT (D̄)× CT ) → Pp(CT (D̄)× CT ),
(L(ζ,W ), µ) 7→ (Sµ)#L(ζ,W ),

the law of a probability measureL(ζ,W ), under the solution map SµT of the Skorokhod problem
with µ fixed. We sometimes denote Φ(ν, ·) by Φν .

As in the case without boundaries, note that (X, k) solves the McKean-Vlasov Skorokhod prob-
lem if and only if L(X, k) is a fixed point of ΦL(ζ,W ). Hence, Theorem 33 reduces to a fixed
point problem with parameter.

A key tool in the proof of this result is the Lipschitz dependence of the boundary term k on the
given path in the Skorokhod problem. The precise statement follows from [16, Theorem 2.2]
(there the Skorokhod problem is formulated in the space of cadlag functions, but continuity of
the solution is ensured by [35, Lemma 2.4]).
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Lemma 35. Fix T > 0. For x0 in D̄, z in CT . Then there exists a unique solution (y, k) =
(yx0,z, kx0,z) in CT (D̄)× CT to the Skorokhod problem driven by z, namely

dy = dz − dk,
y ∈ CT (D), y0 = x0,
k ∈ BVT , d|k| = 1y∈∂Dd|k|, dk = n(y)d|k|.

Moreover there exists C ≥ 0 (which is locally bounded in T ) such that, for every x1
0, x2

0 in D,
for every z1, z2 in CT ,

‖yx10,z1 − yx20,z2‖∞ + ‖kx10,z1 − kx20,z2‖∞ ≤ C|x1
0 − x2

0|+ C‖z1 − z2‖∞,
‖yx10,z1 − x1

0‖∞ + ‖kx10,z1‖∞ ≤ C‖z1‖∞.

Proof of Theorem 33. The result follows from the abstract Proposition 10, provided we verify
conditions 1) and 2) on Φ.

Let µ ∈ Pp(CT (D̄)×CT ) be fixed, let ν1 and ν2 be in Pp(D̄ ×CT ) and let m be an optimal
plan on (Rd × CT )2 for these two measures. On the probability space ((D̄ × CT )2,m), we
call ζ i, W i, i = 1, 2, the r.v. defined by the canonical projections and (Y i, hi) = Sµ(ζ i,W i)
the solution to the Skorokhod problem (38) with input (ζ i,W i). We have

Wp(Φ(ν1, µ),Φ(ν2, µ))p ≤ Em(‖Y 1 − Y 2‖∞ + ‖h1 − h2‖∞)p,

so it is enough to bound the right-hand side. We can apply Lemma 35 to zi =
∫ t

0
b(t, Y i

r , µ)dr+
W i, xi0 = ζ i and so yi = Y i, ki = hi: we get

‖Y 1 − Y 2‖∞ + ‖h1 − h2‖∞ ≤ C|ζ1 − ζ2|+ C

∫ T

0

|b(t, Y 1
t , µ)− b(t, Y 2

t , µ)|dt+ C‖W 1 −W 2‖∞.

Using the Lipschitz property of b in x (uniformly in µ), we get

‖Y 1 − Y 2‖∞ + ‖h1 − h2‖∞ ≤ C|ζ1 − ζ2|+ C

∫ T

0

‖Y 1 − Y 2‖∞dt+ C‖W 1 −W 2‖∞.

By Gronwall inequality

‖Y 1 − Y 2‖∞ + ‖h1 − h2‖∞ ≤ C|ζ1 − ζ2|+ C‖W 1 −W 2‖∞.

We take expectation (with respect to m) of the p-power and use the optimality of m, to obtain

Wp(Φ(ν1, µ),Φ(ν1, µ))p ≤ CWp(ν
1, ν2)p.

This ends the proof of condition 1) of Proposition 10.

Let now (ζ,W ) be fixed with law ν := L(ζ,W ). Consider µ1, µ2 ∈ Pp(CT (D̄) × CT )

and call (Y i, hi) = (Y µi , hµ
i
), i = 1, 2 the corresponding solutions to the Skorokhod prob-

lem (38) (driven by the initial datum ζ and the path W ). We can apply Lemma 35 to zi =∫ t
0
b(t, Y µi

r , µi)dr +W , xi0 = ζ and so yi = Y µi , ki = hi: we get

‖Y 1 − Y 2‖∞ + ‖h1 − h2‖∞ ≤ C

∫ T

0

|b(t,Xµ1

r , µ
1)− b(t,Xµ2

r , µ
2)|dr.
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Taking the p-power and arguing as without boundaries, we get

‖Y 1 − Y 2‖p∞ + ‖h1 − h2‖p∞ ≤ C

∫ T

0

‖Y 1 − Y 2‖p∞dt+ C

∫ T

0

WCt,p(µ
1, µ2)pdt

and so, by Gronwall inequality,

‖Y 1 − Y 2‖p∞ + ‖h1 − h2‖p∞ ≤ C

∫ T

0

WCt,p(µ
1, µ2)pdt. (39)

Taking expectation, we conclude

Wp(Φ(ν, µ1),Φ(ν, µ2))p ≤ C

∫ T

0

WCt,p(µ
1, µ2)pdt.

As for without boundaries, iterating this inequality k times for k large enough (such that (CT )k/k! <
1), we get condition 2) in Proposition 10. The proof is complete.

As in the case without boundary, if the driving process is adapted, then so is the solution to the
McKean-Vlasov Skorokhod problem. We omit the proof as it is completely analogous to the one
without boundary.

Proposition 36. Let (Ft)t be a right-continuous, complete filtration on (Ω,A,P) such that ζ is
F0-measurable and W is (Ft)t-progressively measurable. Then the solution (X, k) to (37) is
also (Ft)t-progressively measurable.

Finally, following Section 3.1, we can obtain a particle approximation to the McKean-Vlasov Sko-
rokhod problem (37), just as corollary of the main result Theorem 33. Here the corresponding
particle system reads

dX i,N
t = b(t,X i,N

t , LN(X
(N)
t , k

(N)
t ))dt+ dW i,N

t − dki,Nt
X i,N ∈ CT (D̄), X i,N

0 = ζ i,N ,

ki,N ∈ BVT , d|ki,N |t = 1Xi,N
t ∈∂Dd|k

i,N |t, dki,Nt = n(X i,N
t )d|ki,N |t.

(40)

Again the solution is an N -uple of couples (X i,N , ki,N)i=1,...N (and again |ki,N | denotes the
total variation process of ki,N and ki,N ∈ BVT means that ki,N belongs to BVT P-a.s.). The
following result can be proven exactly as Theorem 22 (here we use a notation analogous to that
theorem).

Theorem 37. Let p ∈ [1,∞) and assume b satisfies Assumption 5. Let (Ω,A,P) be a proba-
bility space. On this space we consider, forN ∈ N, a family of random variables (ζ(N),W (N)) =
(ζ i,N ,W i,N)1≤i≤N taking values on D̄×CT . Let ζ̄ ∈ Lp(Ω, D̄) and W̄ ∈ Lp(Ω, CT ). Then:

i There exists a unique pathwise solution (X(N), k(N)) (resp. (X̄, k̄)) to the interacting
particle system (40) (resp. equation (37)).

ii There exists a constant C depending on b such that for all N ≥ 1, for a.e. ω ∈ Ω,

WCT (D̄)×CT ,p(L
N(X(N)(ω), k(N)(ω)),L(X̄, k̄))p

≤ CWD̄×CT ,p(L
N(ζ(N)(ω),W (N)(ω)),L(ζ̄ , W̄ ))p.
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iii If the empirical LN(ζ(N),W (N)) converges to L(ζ̄ , W̄ ) P-a.s., then also the emprical
measure of the solution converges.

Remark 38. More general cases can be treated, for example oblique reflection or even more
general domains D, possibly with some extra assumptions: as one can see from the proof, it
is enough to have an estimate as in Lemma 35 for the boundary term. The case of oblique
reflection (still with D convex polyhedron) is treated in [16] (see Assumptions 2.1 and Theorem
2.1 there). The case of more general domains is treated for example in [30, 35], though the
Lipschitz constant in Lemma 35 seems in this case to depend also on z.

5 Large Deviations

In this section we assume that the driving paths W of equation (10) live on the space CT,0 of
continuous functions starting at 0. The results of Sections 2 and 3 apply also in this case.

Let p ∈ [1,∞). Let b : [0, T ] × Rd × Pp(Rd) → Rd be a drift as before and such that it
satisfies 1.

As in Section 2, we define the function

Φ : Pp(Rd × CT,0)× Pp(CT ) → Pp(CT )
(L(ζ,W ), µ) 7→ L(Xµ) = (Sµ)#L(ζ,W ),

where Sµ is the solution map of ODE (13), as defined in (12), with Rd×CT,0 instead of Rd×CT
as a domain. Similarly, we consider the map Ψ defined as in (16), replacing CT with CT,0.

We introduce, for every µ in Pp(CT ), the map

fµ : CT 3 γ 7→
(
γ0, γ· − γ0 −

∫ ·
0

b(s, γs, µs)ds

)
∈ Rd × CT,0. (41)

Note that fµ = (Sµ)−1 and fµ is continuous, in particular measurable.

Lemma 39. Let T > 0 be fixed and let p ∈ [1,∞), assume 1. The function Ψ is a bijection,
with inverse given by Ψ−1(µ) = fµ#µ.

Proof. For every ν in Pp(Rd × CT ) and η in Pp(CT ), we have

Φ(ν, µ) = (Sµ)#ν = η if and only if ν = fµ#η.

In particular, with η = µ, we get that Ψ(ν) = µ if and only if ν = fµ#µ. Hence Ψ is invertible,
with inverse given by Ψ−1(µ) = fµ#µ (one can also show that Ψ−1 is continuous).

For N ∈ N, let (ζ(N),W (N)) = (ζ i,N ,W i,N)1≤i≤N : Ω → (Rd × CT,0)N be a family of
random variables. We consider the system of interacting particles on Rd as defined in (30),
namely {

dX i,N = b(t,X i,N , LN(X(N)))dt+ dW i,N
t

X i,N
0 = ζ i,N .

(42)

with solution X(N) := (X i,N)i=1,··· ,N . We have seen in Section 3.2 that we can define a
suitable probability space (ΩN ,AN ,PN), such that

LPN (ζ(N),W (N)) = LN(ζ(N),W (N)) :=
1

N

N∑
i=1

δ(ζi,N ,W i,N ),
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and equation (10) is exactly the interacting particle system (42). Let (ζ̄ , W̄ ) ∈ Lp(Rd ×CT,0),
we call X̄ ∈ Lp(CT ) the solution to the related McKean-Vlasov equation (29).

This construction shows that Ψ is a continuous function that maps the empirical measure of the
inputs into the empirical measure of the particles, namely

Ψ
(
LN(ζ(N),W (N))

)
= LN(X(N)), ∀N ∈ N.

This suggests the following immediate application to the contraction principle for large devia-
tions.

Lemma 40. Let (ζ(N),W (N)) = (ζ i,N ,W i,N)1≤i≤N ⊂ Lp(Rd × CT,0) be a sequence of
random variables and let I : Pp(Rd × CT,0)→ [0,+∞] be a lower semi-continuous function.
Assume that thatLN(ζ(N),W (N)) satisfies a large deviations principle with (good) rate function
I , in the sense of Definition 4.

Let X(N) = (X i,N)i=1,...,N be the solution to the interacting particle system (42) with inputs
(ζ i,N ,W i,N)i=1,...,N . Then the empirical law LN(X(N)) satisfies a large deviations principle
with (good) rate function

J(µ) := I(Ψ−1(µ)) = I(fµ#µ), ∀µ ∈ Pp(CT ).

Proof. We know that the function Ψ is a continuous function, we can thus apply the contraction
principle for large deviations which ensures that LN(X(N)) satisfies a large deviations principle
with rate function

J(µ) := inf
{
I(ν) | ∀ν ∈ Pp(Rd × CT,0), Ψ(ν) = µ

}
, µ ∈ Pp(CT ).

From the bijectivity of Ψ, given by Lemma 39, we deduce that

J(µ) = I(Ψ−1(µ)) = I(fµ#µ), µ ∈ Pp(CT ).

Given a Polish space E, the relative entropy between two measures µ, µ′ ∈ Pp(E) is defined
as

H(µ | µ′) :=

{ ∫
E

log( dµ
dµ′

)dµ, µ << µ′,

+∞, otherwise.

We can specialize Lemma 40 to the case when the rate function of the inputs is the entropy with
respect to a specific measure. In this case we obtain an even more explicit rate function for the
convergence of the empirical measure of the particles.

Lemma 41. Let (ζ(N),W (N)) = (ζ i,N ,W i,N)1≤i≤N : Ω → (Rd × CT,0)N be a sequence
of random variables such that: There exists ν̄ ∈ Pp(Rd × CT,0) such that LN(ζN),W (N))
satisfies a large deviations principle with good rate function

H(ν | ν̄), ∀ν ∈ Pp(Rd × CT,0).

Let X(N) = (X i,N)i=1,...,N be the solution to the interacting particle system (42) with inputs
(ζ i,N ,W i,N)i=1,··· ,N . Then the empirical law LN(X(N)) satisfies a large deviations principle
with good rate function

H(µ | Φ(ν̄, µ)), ∀µ ∈ Pp(CT ).
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Proof. We can apply Lemma 40 to obtain that LN(X(N)) satisfies a large deviations principle
with rate function

I(µ) := H(Ψ−1(µ) | ν̄), µ ∈ Pp(CT ).

We show now that H(Ψ−1(µ) | ν̄) = H(µ | Φ(ν̄, µ)). For this, note that, by Lemma 39 and
by the definition of Φ,

Ψ−1(µ) = fµ#µ, ν̄ = fµ#Φ(ν̄, µ).

Here fµ# is a push-forward via a measurable map fµ with measurable inverse Sµ. Hence, by
standard facts in measure theory, Ψ−1(µ) � ν̄ if and only if µ � Φ(ν̄, µ), in which case we
have

dΨ−1(µ)

dν̄
=

dµ

dΦ(ν̄, µ)
◦ Sµ.

Hence, in the case that Ψ−1(µ) is not absolutely continuous with respect to ν̄, we haveH(Ψ−1(µ) |
ν̄) = H(µ | Φ(ν̄, µ)) = +∞. In the case that Ψ−1(µ) is absolutely continuous with respect
to ν̄, we have

H(Ψ−1(µ) | ν̄) =

∫
dΨ−1(µ)

dν̄
log

dΨ−1(µ)

dν̄
dν̄ =

∫
dµ

dΦ(ν̄, µ)
d(Sµ#ν̄) = H(µ | Φ(ν̄, µ)).

The proof is complete.

We will now apply Sanov’s Theorem to i.i.d. inputs. The case when the convergence happens in
the Wasserstein metric was proved in [38], and it requires an exponential integrability assump-
tion on the law of the inputs.

Theorem 42. Let (ζ i,W i)i≥1 ⊂ Lp(Rd ×CT,0) be a sequence of i.i.d. random variables with
law ν̄ := L(ζ1,W 1). Assume that there exists (x0, γ0) ∈ Rd × CT,0 such that

log

∫
Rd×CT,0

exp(λ(|x− x0|+ ‖γ − γ0‖∞)p)dν̄(x, γ) < +∞, ∀λ > 0.

Let X(N) := (X i,N)i=1,...,N be the solution to the interacting particle system (42) with inputs
(ζ(N),W (N)) := (ζ i,W i)i=1,··· ,N . Then the empirical law LN(X(N)) satisfies a large devia-
tions principle with good rate function

H(µ | Φ(ν̄, µ)), ∀µ ∈ Pp(CT ).

Proof. Sanov’s theorem, as in [38, Theorem 1.1], gives that the empirical measureLN(ζ(N),W (N))
satisfies a large deviations principle with good rate function

I(ν) = H(ν | ν̄), ∀ν ∈ Pp(Rd × CT,0).

The proof then follows from Lemma 41.

A Proof of Proposition 10

In this section we prove proposition 10.
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First, we must show that ΦQ has a unique fixed point. If k = 1, it is exactly the contraction
principle, so we will assume k > 1. Clearly (ΦQ)k is a contraction, hence it is has a unique
fixed point PQ. Hence,

dE(ΦQ(PQ), PQ) = dE((ΦQ)k+1(PQ), (ΦQ)k(PQ)) ≤ cdE(ΦQ(PQ), PQ).

Since c < 1, this implies dE(ΦQ(PQ), PQ) = 0 and therefore PQ is also a fixed point for ΦQ.
Every fixed point of ΦQ is also a fixed point for (ΦQ)k, hence PQ is the only fixed point of ΦQ.

We are left to prove (15). By induction, one can show that

∀Q,Q′ ∈ F, ∀P ∈ E dE((ΦQ)k(P ), (ΦQ′)k(P )) ≤

(
k∑
i=1

Li

)
dF (Q,Q′).

Using a triangular inequality as well as assumption 2) and the previous inequality we obtain

dE(PQ, PQ′) =dE((ΦQ)k(P ), (ΦQ′)k(P ′))

≤dE((ΦQ)k(P ), (ΦQ)k(P ′)) + dE(Φk
Q(P ′), (ΦQ′)k(P ′))

≤cdE(PQ, PQ′) +

(
k∑
i=1

Li

)
dF (Q,Q′).

The proof is complete.

B Wasserstein Metric

We now recall some useful information on the Wasserstein metric, which we defined in (8). For
more details the reader can refer to [2]. Let p ∈ [1,∞).

i The infimum in the definition of Wasserstein metric is a minimum. For each couple µ, ν ∈
Pp(E) there exists a measure m ∈ Γ(µ, ν) such that

WE,p(µ, ν)p =

∫∫
E×E

d(x, y)pm(dx, dy). (43)

ii The Wasserstein distance of two measures on the space of paths is larger than the
distance of the corresponding one-time marginals at t, for any t. Indeed, note that, for
any µ, ν ∈ Pp(CT ), if m is in Γ(µ, ν), then mt ∈ Γ(µt, νt), therefore we have

WRd,p(µt, νt)
p ≤

∫∫
Rd×Rd

|x− x′|pmt(dx, dx
′) =

∫∫
CT×CT

|γt − γ′t|pm(dγ, dγ′) ≤ WCT ,p(µ, ν)p.

iii Let E be a Polish space. For any given sequence (µn)n≥1 ∈ Pp(E) the following are
equivalent

iii.1 (The sequence converges in Wassertein sense) limn→∞WE,p(µn, µ) = 0.

iii.2 (The sequence converges weakly and is uniformly integrable) There exists x0 ∈ E
such that,{

µn
∗
⇀ µ, as n→∞

limk→∞
∫
E\Bk(x0)

dp(x, x0)dµn(x) = 0, uniformly in n.

Cf. [2, Proposition 7.1.5].
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As a consequence of point (iii), we give a sufficient condition to pass from weak convergence of
measures to convergence in the p-Wasserstein distance.

Lemma 43. Let (E, d) be a Polish space and µn, n ∈ N, µ be probability measures on E,
fix q ∈ [1,∞). If the sequence (µn)n∈N converges to µ in the weak topology on probability
measures and if, for some p ∈ (q,∞) and some x0 in E,

sup
n

∫
E

d(x, x0)pµn(dx) <∞, (44)

then µn converges in the q-Wasserstein metric to µ ∈ Pq(E).

Proof. By property (iii), it is enough to show that the map x 7→ d(x, x0)q is uniformly integrable
with respect to (µn)n. For this, we have, for any R > 0, for any n,∫

d(x,x0)>R

d(x, x0)qµn(dx) ≤ Rp−q
∫
E

d(x, x0)pµn(dx).

By the uniform bound (44), we can choose R large enough to make the right-hand side above
small for all n. This shows that x 7→ d(x, x0)q is uniformly integrable.

Lemma 44. Given p ∈ (1,∞) and a separable Banach space (E, | · |), let (X i)i≥1 ∈
Lp(Ω, E) be a family of i.i.d. random variables on this space with law µ. Then,

lim
N→∞

WE,q(L
N(X(N)), µ) = 0, q ∈ (1, p), P− a.s.

Proof. Since (X i) are i.i.d., P-a.s. convergence in the weak topology

LN(X(N)(ω))
∗
⇀ L(X1), P− a.s.

is a classical result, see for example [39] and references therein. Moreover, by the law of large
numbers, we have, for a.e. ω,∫

E

|x|pdLN(X(N)(ω))(x) =
1

N

N∑
i=1

|X i(ω)|p → E|X1|p <∞.

We obtain condition (44) in Lemma 43, which concludes the proof.
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