398 research outputs found

    Morphological, micro and macro nutrient analysis of the medicinal plant glory lily (Gloriosa superba L.)

    Get PDF
    In this study the three different treated tuber and seed samples of Glory lily were collected from farmer field's of Udayarpalayam and analyzed for the possible presence of colchicines using SEM technique. The results of SEM have shown that the presence of elements Ca and Fe are found only in Organic Manure Treatment. Also the quantitative estimation of EDX spectra observation confirms the percentage of Zn in Organic Manure Treatment (T3) was the highest among all the treatments. In conclusion from the results, Glory Lily may be considered as colchicines sources for the chemical constituents of medicine industry. Further it would be useful of producing high amount of colchicines for pest control based on natural products

    FTIR spectroscoptc study and antifungal activity of the medicinal plant glory lily (Gloriosa superba)

    Get PDF
    In this present study, the presence of the phyto compound (i.e.) Colchicine and other chemical constituents present in three different treated tuber and seed samples of Glory Lily (Gloriosa superbd) was confirmed using FTIR. An attempt has been made to correlate the extinction coefficient (K) values of all the samples. And also the samples were extensively studied for their antifungal activity against Pseudomonas aeruginosa, Klebsiella phemoniae, and Salmonella typhi. The results indicated that the Organic Manure treated samples were highly active against the three fungi

    Analysis of SPWM Technique for Solar Inverter

    Full text link
    Reactive power control is necessary to maintain power system stable. In a three phase grid connected PV system, the inverter should regulate the reactive power. Low Voltage Ride Through has to be done to ensure the system stability in fault conditions. Fault current has to be limited. In this paper, we propose a control strategy for grid connected solar PV inverter. The system study is done under LVRT condition. The strategy is based on current loop under single axis dq rotating coordinate system. Grid connected PV systems has a three phase inverter fed by DC-DC converter which will take care of maximum power point. In this project, a 100kW PV system is studied. The entire system is simulated and analysed using MATLAB Simulink software

    Isolation and characterization of altered root growth behavior and salinity tolerant mutants in rice

    Get PDF
    Generation, screening and isolating mutants for any developmental and adaptive traits plays a major role in plant functional genomics research. Identification and exploitation of mutants possessing contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling these traits and in turn will be useful for manipulating abiotic stress tolerance through tilling and genetic engineering in rice. In this study, we have screened about 1500 mutants (M2 generation) generated by treating an upland drought tolerant genotype Nagina 22 with Ethyl Methane Sulfonate (EMS), for their root growth behavior and salinity tolerance under hydroponic conditions. Six independent mutant lines possessing significantly shorter roots and three mutant lines exhibiting greater degree of salinity tolerance than the wild type plants were identified. The identified mutant lines were advanced to M5 generation to allow the mutants to reach homozygosity, and the fixed mutants were confirmed for their phenotype. One mutant namely N22-C-241-5-6 was found to possess significantly shorter roots than wild type N22, and it was also noticed that the mutant was devoid of root cap. Among the three salinity tolerant mutant lines identified, N22-C-334-3 was found to possess a greater degree of tolerance upto 250 mM Nacl stress at germination stage. These identified mutant lines can be used for further physiological, biochemical and molecular biology experiments to identify candidate gene(s) controlling root growth behavior and salinity tolerance in rice.Keywords: Rice, mutation, EMS, altered rood growth and salinity tolerant mutantAfrican Journal of Biotechnology Vol. 12(40), pp. 5852-585

    Effect of Industrial Effluent on the Growth of Marine Diatom, Chaetoceros simplex (Ostenfeld, 1901)

    Get PDF
    The marine centric diatom,Chaetoceros simplex (Ostenfeld, 1901) was exposed to five different concentrations of industrial effluent for 96 hrs to investigate the effect on growth. The physico-chemical parameters viz. colour, odour, temperature, salinity, dissolved oxygen, turbidity, pH, alkalinity, hardness, ammonia, nitrite, nitrate, inorganic phosphate, total phosphorous, reactive  silicate, calcium and magnesium were estimated in the effluent. The Ammonia  (326 μg. L-1), Nitrite (19.53 μg. L-1) and Nitrate (471.4 μg. L-1) were observed at higher levels. About 50% of the cell density of C. simplex reached a lesser dilutions of effluent viz. 1:625 and 1:1250 than the control. The highest cell density (14.3 × 104 cell ml-1) was recorded in 1:10000 diluted effluent followed by control and the lowest cell density was observed in 1:625 diluted effluents. From the results, it is evidenced that the lower volume of effluent discharge into higher volume of water could not affect the growth rate of phytoplankton. It is more important that to reduce the effect of pollution and environmental sustainability. @JASEMJ. Appl. Sci. Environ. Manage. December, 2010, Vol. 14 (4) 35 - 3

    Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals.

    Get PDF
    Broadly Cross clade Neutralizing (BCN) antibodies are recognized as potential therapeutic tools and leads for the design of a vaccine that can protect human beings against various clades of Human Immunodeficiency Virus (HIV). In the present study, we screened plasma of 88 HIV-1 infected ART naïve individuals for their neutralization potential using a standard panel of 18 pseudoviruses belonging to different subtypes and different levels of neutralization. We identified 12 samples with good breadth of neutralization (neutralized >90% of the viruses). Four of these samples neutralized even the difficult-to-neutralize tier-3 pseudoviruses with great potency (GMT > 600). Analysis of neutralization specificities indicated that four samples had antibodies with multiple epitope binding specificities, viz. CD4-binding site (CD4BS), glycans in the V1/V2 and V3 regions and membrane proximal external region (MPER). Our findings indicate the strong possibility of identifying highly potent bNAbs with known or novel specificities from HIV-1 subtype C infected individuals from India that can be exploited as therapeutic tools or lead molecules for the identification of potential epitopes for design of a protective HIV-1 vaccine

    3′-UTR SNP rs2229611 in G6PC1 affects mRNA stability, expression and Glycogen Storage Disease type-Ia risk

    Get PDF
    The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P = 0.0195) with CC compared to TT/TC genotypes, whereas no such correlation was observed with breast cancer cases. We observed a strong linkage disequilibrium (LD) among rs2229611 and other disease causing G6PC1 variants (| D′| = 1, r2 = 1). Functional validation performed in HepG2 cells using luciferase constructs showed significant (P < 0.05) decrease in expression than wild-type 3′-UTR due to curtailed mRNA stability. Furthermore, AU-rich elements (AREs) mediated regulation of G6PC1 expression characterized using 3′-UTR deletion constructs showed a prominent decrease in mRNA stability. We then examined whether miRNAs are involved in controlling G6PC1 expression using pmirGLO-UTR constructs, with evidence of more distinct inhibition in the reporter function with rs2229611. These data suggests that rs2229611 is a crucial regulatory SNP which in homozygous state leads to a more aggressive disease phenotype in GSD-Ia patients. The implication of this result is significant in predicting disease onset, progression and response to disease modifying treatments in patients with GSD-Ia

    Bioremediation of Penicillin-Contaminated Poultry Faecal Waste using Betalactamase-Producing Bacteria

    Get PDF
    The widespread use of antibiotics in poultry farming has led to the contamination of the environment with antibiotic residues, posing significant risks to human health and contributing to the development of antibiotic resistance. In this study, we aimed to isolate betalactamase-producing bacteria from poultry faecal waste samples obtained from local poultry processing industries in Namakkal, Tamilnadu, India. The potential isolates were further characterized for betalactamase enzyme activity and their ability to degrade penicillin, a commonly used antibiotic in the poultry industry. Twenty poultry faecal waste samples were collected from regular poultry waste dumping sites. Microorganisms were isolated from these samples using the serial dilution and plating method on nutrient agar media. The isolated bacterial colonies were purified to obtain pure cultures for further analysis. The betalactamase-producing isolates were identified using the iodometric tube method, and four out of ten isolates showed positive results for betalactamase activity. These positive isolates were subjected to enzyme assay, and isolate 10 exhibited the highest enzyme activity with a concentration of 43U/ml, followed by isolate 7 with 30.5U/ml of enzyme. The potential betalactamase-producing isolate 10 was selected for its application in the degradation of penicillin in poultry faecal waste. The faecal waste samples were collected from the antibiotic-contaminated area of a poultry farm. After the addition of separated crude enzyme (5ml of 100U), the faecal sample was incubated for 15 days under specific conditions. HPLC analysis revealed a significant degradation of penicillin in the test sample treated with the betalactamase enzyme, with a degradation percentage of 48.6%. The results of this study indicate that betalactamase-producing bacteria can effectively degrade penicillin in poultry faecal waste. This bioremediation approach presents a potential solution to reduce antibiotic pollution in the environment and mitigate the risk of antibiotic resistance. Further research and application of such enzymatic degradation methods could contribute to sustainable and eco-friendly waste management practices in the poultry industry

    Design and Analysis of Composite Leaf Spring

    Get PDF
    In the present scenario, reducing the weight is the major desire in automobile world. As the conventional steel leaf spring contributes some amount of weight with respect to the total weight of vehicle. So lots of researches are being developed for reduction of weight. This paper deals the reduction of weight in the conventional steel leaf spring with the composite leaf spring. For this purpose various composite materials such as E-glass, epoxy and jute are used in different proportion. This papers also compares the stress, deformation of conventional leaf steel spring with composite leaf spring while loading and unloading, thereby ensuring that the stiffness and efficiency is improved .The three dimensional model are analyzed in CATIA V5R20 and Ansys

    Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography–Mass Spectrometry Analysis

    Get PDF
    Rice (Oryza sativa L.) is one of the major cereal crops cultivated across the world, particularly in Southeast Asia with 95% of global production. The present study was aimed to evaluate the total phenolic content (TPC) and to profile all the volatile organic compounds (VOCs) of eight popular traditional and two modern rice varieties cultivated in South India. Thirty-one VOCs were estimated by gas chromatography–mass spectrometry (GC-MS). The identified volatile compounds in the 10 rice varieties belong to the chemical classes of fatty acids, terpenes, alkanes, alkenes, alcohols, phenols, esters, amides, and others. Interestingly, most of the identified predominant components were not identical, which indicate the latent variation among the rice varieties. Significant variations exist for fatty acids (46.9–76.2%), total terpenes (12.6–30.7%), total phenols (0.9–10.0%), total aliphatic alcohols (0.8–5.9%), total alkanes (0.5–5.1%), and total alkenes (1.0–4.9%) among the rice varieties. Of all the fatty acid compounds, palmitic acid, elaidic acid, linoleic acid, and oleic acid predominantly varied in the range of 11.1–33.7, 6.1–31.1, 6.0–28.0, and 0.7–15.1%, respectively. The modern varieties recorded the highest palmitic acid contents (28.7–33.7%) than the traditional varieties (11.1–20.6%). However, all the traditional varieties had higher linoleic acid (10.0–28.0%) than the modern varieties (6.0–8.5%). Traditional varieties had key phenolic compounds, stearic acid, butyric acid, and glycidyl oleate, which are absent in the modern varieties. The traditional varieties Seeraga samba and Kichilli samba had the highest azulene and oleic acid, respectively. All these indicate the higher variability for nutrients and aroma in traditional varieties. These varieties can be used as potential parents to improve the largely cultivated high-yielding varieties for the evolving nutritionalmarket. The hierarchical cluster analysis showed three different clusters implying the distinctness of the traditional and modern varieties. This study provided a comprehensive volatile profile of traditional and modern rice as a staple food for energy as well as for aroma with nutrition
    • …
    corecore